Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > i3ran | GIF version |
Description: WQL (Weak Quantum Logic) rule. (Contributed by NM, 7-Nov-1997.) |
Ref | Expression |
---|---|
i3ran.1 | (a →3 b) = 1 |
Ref | Expression |
---|---|
i3ran | ((a ∩ c) →3 (b ∩ c)) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | i3ran.1 | . . . . 5 (a →3 b) = 1 | |
2 | 1 | binr1 517 | . . . 4 (b⊥ →3 a⊥ ) = 1 |
3 | 2 | i3ror 532 | . . 3 ((b⊥ ∪ c⊥ ) →3 (a⊥ ∪ c⊥ )) = 1 |
4 | 3 | binr1 517 | . 2 ((a⊥ ∪ c⊥ )⊥ →3 (b⊥ ∪ c⊥ )⊥ ) = 1 |
5 | df-a 40 | . 2 (a ∩ c) = (a⊥ ∪ c⊥ )⊥ | |
6 | df-a 40 | . 2 (b ∩ c) = (b⊥ ∪ c⊥ )⊥ | |
7 | 4, 5, 6 | i33tr1 529 | 1 ((a ∩ c) →3 (b ∩ c)) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 1wt 8 →3 wi3 14 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i3 46 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: i3lan 536 i32an 537 |
Copyright terms: Public domain | W3C validator |