| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > id5leid0 | GIF version | ||
| Description: Quantum identity is less than classical identity. (Contributed by NM, 4-Mar-2006.) |
| Ref | Expression |
|---|---|
| id5leid0 | (a ≡ b) ≤ (a ≡0 b) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-a2 31 | . . 3 ((a ∩ b) ∪ (a⊥ ∩ b⊥ )) = ((a⊥ ∩ b⊥ ) ∪ (a ∩ b)) | |
| 2 | lea 160 | . . . . 5 (a⊥ ∩ b⊥ ) ≤ a⊥ | |
| 3 | lear 161 | . . . . 5 (a ∩ b) ≤ b | |
| 4 | 2, 3 | le2or 168 | . . . 4 ((a⊥ ∩ b⊥ ) ∪ (a ∩ b)) ≤ (a⊥ ∪ b) |
| 5 | lear 161 | . . . . 5 (a⊥ ∩ b⊥ ) ≤ b⊥ | |
| 6 | lea 160 | . . . . 5 (a ∩ b) ≤ a | |
| 7 | 5, 6 | le2or 168 | . . . 4 ((a⊥ ∩ b⊥ ) ∪ (a ∩ b)) ≤ (b⊥ ∪ a) |
| 8 | 4, 7 | ler2an 173 | . . 3 ((a⊥ ∩ b⊥ ) ∪ (a ∩ b)) ≤ ((a⊥ ∪ b) ∩ (b⊥ ∪ a)) |
| 9 | 1, 8 | bltr 138 | . 2 ((a ∩ b) ∪ (a⊥ ∩ b⊥ )) ≤ ((a⊥ ∪ b) ∩ (b⊥ ∪ a)) |
| 10 | dfb 94 | . 2 (a ≡ b) = ((a ∩ b) ∪ (a⊥ ∩ b⊥ )) | |
| 11 | df-id0 49 | . 2 (a ≡0 b) = ((a⊥ ∪ b) ∩ (b⊥ ∪ a)) | |
| 12 | 9, 10, 11 | le3tr1 140 | 1 (a ≡ b) ≤ (a ≡0 b) |
| Colors of variables: term |
| Syntax hints: ≤ wle 2 ⊥ wn 4 ≡ tb 5 ∪ wo 6 ∩ wa 7 ≡0 wid0 17 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-id0 49 df-le1 130 df-le2 131 |
| This theorem is referenced by: id5id0 352 |
| Copyright terms: Public domain | W3C validator |