QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  id5id0 GIF version

Theorem id5id0 352
Description: Show that classical identity follows from quantum identity in OL. (Contributed by NM, 4-Mar-2006.)
Hypothesis
Ref Expression
id5id0.1 (ab) = 1
Assertion
Ref Expression
id5id0 (a0 b) = 1

Proof of Theorem id5id0
StepHypRef Expression
1 id5id0.1 . 2 (ab) = 1
2 id5leid0 351 . . 3 (ab) ≤ (a0 b)
32sklem 230 . 2 ((ab) ∪ (a0 b)) = 1
41, 3skr0 242 1 (a0 b) = 1
Colors of variables: term
Syntax hints:   = wb 1  tb 5  1wt 8  0 wid0 17
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-id0 49  df-le1 130  df-le2 131
This theorem is referenced by:  wdka4o  1116  wddi-0  1117
  Copyright terms: Public domain W3C validator