Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > df-id0 | GIF version |
Description: Define classical identity. (Contributed by NM, 7-Feb-1999.) |
Ref | Expression |
---|---|
df-id0 | (a ≡0 b) = ((a⊥ ∪ b) ∩ (b⊥ ∪ a)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wva | . . 3 term a | |
2 | wvb | . . 3 term b | |
3 | 1, 2 | wid0 17 | . 2 term (a ≡0 b) |
4 | 1 | wn 4 | . . . 4 term a⊥ |
5 | 4, 2 | wo 6 | . . 3 term (a⊥ ∪ b) |
6 | 2 | wn 4 | . . . 4 term b⊥ |
7 | 6, 1 | wo 6 | . . 3 term (b⊥ ∪ a) |
8 | 5, 7 | wa 7 | . 2 term ((a⊥ ∪ b) ∩ (b⊥ ∪ a)) |
9 | 3, 8 | wb 1 | 1 wff (a ≡0 b) = ((a⊥ ∪ b) ∩ (b⊥ ∪ a)) |
Colors of variables: term |
This definition is referenced by: nomcon0 301 nom20 313 nom30 319 nom50 331 nom60 337 id5leid0 351 lem3.3.7i0e1 1057 lem3.3.7i0e2 1058 wdid0id5 1111 wdid0id1 1112 wdid0id2 1113 wdid0id3 1114 wdid0id4 1115 |
Copyright terms: Public domain | W3C validator |