Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > dfb | GIF version |
Description: Biconditional expressed with others. (Contributed by NM, 10-Aug-1997.) |
Ref | Expression |
---|---|
dfb | (a ≡ b) = ((a ∩ b) ∪ (a⊥ ∩ b⊥ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-b 39 | . 2 (a ≡ b) = ((a⊥ ∪ b⊥ )⊥ ∪ (a ∪ b)⊥ ) | |
2 | df-a 40 | . . . 4 (a ∩ b) = (a⊥ ∪ b⊥ )⊥ | |
3 | 2 | ax-r1 35 | . . 3 (a⊥ ∪ b⊥ )⊥ = (a ∩ b) |
4 | oran 87 | . . . 4 (a ∪ b) = (a⊥ ∩ b⊥ )⊥ | |
5 | 4 | con2 67 | . . 3 (a ∪ b)⊥ = (a⊥ ∩ b⊥ ) |
6 | 3, 5 | 2or 72 | . 2 ((a⊥ ∪ b⊥ )⊥ ∪ (a ∪ b)⊥ ) = ((a ∩ b) ∪ (a⊥ ∩ b⊥ )) |
7 | 1, 6 | ax-r2 36 | 1 (a ≡ b) = ((a ∩ b) ∪ (a⊥ ∩ b⊥ )) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ≡ tb 5 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-b 39 df-a 40 |
This theorem is referenced by: dfnb 95 bicom 96 lbi 97 biid 116 1b 117 conb 122 mi 125 wlem3.1 210 ka4lemo 228 ska13 241 wlem1 243 nom25 318 id5leid0 351 2vwomlem 365 wr2 371 wdf-c2 384 ska2 432 ska4 433 woml7 437 combi 485 oml4 487 i3bi 496 u1lembi 720 u2lembi 721 i2bi 722 u4lembi 724 u5lembi 725 u12lembi 726 u21lembi 727 bi1o1a 798 biao 799 mlalem 832 bi3 839 orbi 842 mlaconj4 844 comanblem2 871 mlaconjo 886 oa3-3lem 981 oa3-4lem 983 mloa 1018 wdcom 1105 wdid0id5 1111 |
Copyright terms: Public domain | W3C validator |