Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > orcom | GIF version |
Description: Commutative law. (Contributed by NM, 27-May-2008.) (Revised by NM, 31-Mar-2011.) |
Ref | Expression |
---|---|
orcom | (a ∪ b) = (b ∪ a) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-a2 31 | 1 (a ∪ b) = (b ∪ a) |
Colors of variables: term |
Syntax hints: = wb 1 ∪ wo 6 |
This theorem was proved from axioms: ax-a2 31 |
This theorem is referenced by: k1-7 354 k1-8b 356 k1-5 360 mli 1126 mlduali 1128 ml3le 1129 vneulem2 1132 vneulem6 1136 vneulem9 1139 vneulem10 1140 vneulem11 1141 vneulem16 1146 vneulemexp 1148 dp15lema 1154 dp15lemd 1157 dp53lema 1163 dp53lemc 1165 dp53leme 1167 dp53lemf 1168 dp35lemc 1175 dp35lem0 1179 dp41lemc0 1184 dp41leme 1187 dp41lemf 1188 dp41lemg 1189 dp41leml 1193 dp32 1196 xdp41 1198 xdp15 1199 xdp53 1200 xxdp41 1201 xxdp15 1202 xxdp53 1203 xdp45lem 1204 xdp43lem 1205 xdp45 1206 xdp43 1207 3dp43 1208 oadp35lemc 1211 testmod 1213 testmod1 1214 testmod2 1215 testmod2expanded 1216 testmod3 1217 |
Copyright terms: Public domain | W3C validator |