| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > k1-8a | GIF version | ||
| Description: First part of statement (8) in proof of Theorem 1 of Kalmbach, Orthomodular Lattices, p. 21. (Contributed by NM, 27-May-2008.) |
| Ref | Expression |
|---|---|
| k1-8a.1 | x⊥ = ((x⊥ ∩ c) ∪ (x⊥ ∩ c⊥ )) |
| k1-8a.2 | x ≤ c |
| k1-8a.3 | y ≤ c⊥ |
| Ref | Expression |
|---|---|
| k1-8a | x = ((x ∪ y) ∩ c) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leo 158 | . . 3 x ≤ (x ∪ y) | |
| 2 | k1-8a.2 | . . 3 x ≤ c | |
| 3 | 1, 2 | ler2an 173 | . 2 x ≤ ((x ∪ y) ∩ c) |
| 4 | k1-8a.3 | . . . . 5 y ≤ c⊥ | |
| 5 | 4 | lelor 166 | . . . 4 (x ∪ y) ≤ (x ∪ c⊥ ) |
| 6 | 5 | leran 153 | . . 3 ((x ∪ y) ∩ c) ≤ ((x ∪ c⊥ ) ∩ c) |
| 7 | ax-a1 30 | . . . . . 6 x = x⊥ ⊥ | |
| 8 | 7 | ror 71 | . . . . 5 (x ∪ c⊥ ) = (x⊥ ⊥ ∪ c⊥ ) |
| 9 | 8 | ran 78 | . . . 4 ((x ∪ c⊥ ) ∩ c) = ((x⊥ ⊥ ∪ c⊥ ) ∩ c) |
| 10 | 7 | ran 78 | . . . . . 6 (x ∩ c) = (x⊥ ⊥ ∩ c) |
| 11 | k1-8a.1 | . . . . . . 7 x⊥ = ((x⊥ ∩ c) ∪ (x⊥ ∩ c⊥ )) | |
| 12 | 11 | k1-6 353 | . . . . . 6 (x⊥ ⊥ ∩ c) = ((x⊥ ⊥ ∪ c⊥ ) ∩ c) |
| 13 | 10, 12 | tr 62 | . . . . 5 (x ∩ c) = ((x⊥ ⊥ ∪ c⊥ ) ∩ c) |
| 14 | 13 | cm 61 | . . . 4 ((x⊥ ⊥ ∪ c⊥ ) ∩ c) = (x ∩ c) |
| 15 | 2 | df2le2 136 | . . . 4 (x ∩ c) = x |
| 16 | 9, 14, 15 | 3tr 65 | . . 3 ((x ∪ c⊥ ) ∩ c) = x |
| 17 | 6, 16 | lbtr 139 | . 2 ((x ∪ y) ∩ c) ≤ x |
| 18 | 3, 17 | lebi 145 | 1 x = ((x ∪ y) ∩ c) |
| Colors of variables: term |
| Syntax hints: = wb 1 ≤ wle 2 ⊥ wn 4 ∪ wo 6 ∩ wa 7 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
| This theorem is referenced by: k1-8b 356 k1-2 357 |
| Copyright terms: Public domain | W3C validator |