QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  l42mod GIF version

Theorem l42mod 1151
Description: An equation that fails in OML L42 when converted to a Hilbert space equation. (Contributed by NM, 8-Apr-2012.)
Assertion
Ref Expression
l42mod ((((ab) ∩ c) ∪ d) ∩ e) ≤ ((ab) ∪ ((ad) ∩ (be)))

Proof of Theorem l42mod
StepHypRef Expression
1 l42modlem2 1150 . 2 ((((ab) ∩ c) ∪ d) ∩ e) ≤ (((ab) ∪ d) ∩ ((ab) ∪ e))
2 l42modlem1 1149 . 2 (((ab) ∪ d) ∩ ((ab) ∪ e)) = ((ab) ∪ ((ad) ∩ (be)))
31, 2lbtr 139 1 ((((ab) ∩ c) ∪ d) ∩ e) ≤ ((ab) ∪ ((ad) ∩ (be)))
Colors of variables: term
Syntax hints:  wle 2  wo 6  wa 7
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-ml 1122
This theorem depends on definitions:  df-a 40  df-t 41  df-f 42  df-le1 130  df-le2 131
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator