Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > l42modlem2 | GIF version |
Description: Lemma for l42mod 1151. (Contributed by NM, 8-Apr-2012.) |
Ref | Expression |
---|---|
l42modlem2 | ((((a ∪ b) ∩ c) ∪ d) ∩ e) ≤ (((a ∪ b) ∪ d) ∩ ((a ∪ b) ∪ e)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lea 160 | . . 3 ((a ∪ b) ∩ c) ≤ (a ∪ b) | |
2 | 1 | leror 152 | . 2 (((a ∪ b) ∩ c) ∪ d) ≤ ((a ∪ b) ∪ d) |
3 | leor 159 | . 2 e ≤ ((a ∪ b) ∪ e) | |
4 | 2, 3 | le2an 169 | 1 ((((a ∪ b) ∩ c) ∪ d) ∩ e) ≤ (((a ∪ b) ∪ d) ∩ ((a ∪ b) ∪ e)) |
Colors of variables: term |
Syntax hints: ≤ wle 2 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
This theorem is referenced by: l42mod 1151 |
Copyright terms: Public domain | W3C validator |