Proof of Theorem l42modlem1
Step | Hyp | Ref
| Expression |
1 | | leo 158 |
. . . . . 6
b ≤ (b ∪ e) |
2 | 1 | ml2i 1125 |
. . . . 5
(b ∪ ((a ∪ d) ∩
(b ∪ e))) = ((b ∪
(a ∪ d)) ∩ (b
∪ e)) |
3 | | ancom 74 |
. . . . 5
((b ∪ (a ∪ d))
∩ (b ∪ e)) = ((b ∪
e) ∩ (b ∪ (a ∪
d))) |
4 | 2, 3 | tr 62 |
. . . 4
(b ∪ ((a ∪ d) ∩
(b ∪ e))) = ((b ∪
e) ∩ (b ∪ (a ∪
d))) |
5 | 4 | lor 70 |
. . 3
(a ∪ (b ∪ ((a
∪ d) ∩ (b ∪ e)))) =
(a ∪ ((b ∪ e) ∩
(b ∪ (a ∪ d)))) |
6 | 5 | cm 61 |
. 2
(a ∪ ((b ∪ e) ∩
(b ∪ (a ∪ d)))) =
(a ∪ (b ∪ ((a
∪ d) ∩ (b ∪ e)))) |
7 | | orass 75 |
. . . . 5
((a ∪ b) ∪ d) =
(a ∪ (b ∪ d)) |
8 | | or12 80 |
. . . . 5
(a ∪ (b ∪ d)) =
(b ∪ (a ∪ d)) |
9 | 7, 8 | tr 62 |
. . . 4
((a ∪ b) ∪ d) =
(b ∪ (a ∪ d)) |
10 | | orass 75 |
. . . 4
((a ∪ b) ∪ e) =
(a ∪ (b ∪ e)) |
11 | 9, 10 | 2an 79 |
. . 3
(((a ∪ b) ∪ d)
∩ ((a ∪ b) ∪ e)) =
((b ∪ (a ∪ d))
∩ (a ∪ (b ∪ e))) |
12 | | ancom 74 |
. . 3
((b ∪ (a ∪ d))
∩ (a ∪ (b ∪ e))) =
((a ∪ (b ∪ e))
∩ (b ∪ (a ∪ d))) |
13 | | leo 158 |
. . . . . 6
a ≤ (a ∪ d) |
14 | 13 | lerr 150 |
. . . . 5
a ≤ (b ∪ (a ∪
d)) |
15 | 14 | ml2i 1125 |
. . . 4
(a ∪ ((b ∪ e) ∩
(b ∪ (a ∪ d)))) =
((a ∪ (b ∪ e))
∩ (b ∪ (a ∪ d))) |
16 | 15 | cm 61 |
. . 3
((a ∪ (b ∪ e))
∩ (b ∪ (a ∪ d))) =
(a ∪ ((b ∪ e) ∩
(b ∪ (a ∪ d)))) |
17 | 11, 12, 16 | 3tr 65 |
. 2
(((a ∪ b) ∪ d)
∩ ((a ∪ b) ∪ e)) =
(a ∪ ((b ∪ e) ∩
(b ∪ (a ∪ d)))) |
18 | | orass 75 |
. 2
((a ∪ b) ∪ ((a
∪ d) ∩ (b ∪ e))) =
(a ∪ (b ∪ ((a
∪ d) ∩ (b ∪ e)))) |
19 | 6, 17, 18 | 3tr1 63 |
1
(((a ∪ b) ∪ d)
∩ ((a ∪ b) ∪ e)) =
((a ∪ b) ∪ ((a
∪ d) ∩ (b ∪ e))) |