QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  ledir GIF version

Theorem ledir 175
Description: Half of distributive law. (Contributed by NM, 30-Nov-1998.)
Assertion
Ref Expression
ledir ((ba) ∪ (ca)) ≤ ((bc) ∩ a)

Proof of Theorem ledir
StepHypRef Expression
1 ledi 174 . 2 ((ab) ∪ (ac)) ≤ (a ∩ (bc))
2 ancom 74 . . 3 (ba) = (ab)
3 ancom 74 . . 3 (ca) = (ac)
42, 32or 72 . 2 ((ba) ∪ (ca)) = ((ab) ∪ (ac))
5 ancom 74 . 2 ((bc) ∩ a) = (a ∩ (bc))
61, 4, 5le3tr1 140 1 ((ba) ∪ (ca)) ≤ ((bc) ∩ a)
Colors of variables: term
Syntax hints:  wle 2  wo 6  wa 7
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-t 41  df-f 42  df-le1 130  df-le2 131
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator