Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > ledir | GIF version |
Description: Half of distributive law. (Contributed by NM, 30-Nov-1998.) |
Ref | Expression |
---|---|
ledir | ((b ∩ a) ∪ (c ∩ a)) ≤ ((b ∪ c) ∩ a) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ledi 174 | . 2 ((a ∩ b) ∪ (a ∩ c)) ≤ (a ∩ (b ∪ c)) | |
2 | ancom 74 | . . 3 (b ∩ a) = (a ∩ b) | |
3 | ancom 74 | . . 3 (c ∩ a) = (a ∩ c) | |
4 | 2, 3 | 2or 72 | . 2 ((b ∩ a) ∪ (c ∩ a)) = ((a ∩ b) ∪ (a ∩ c)) |
5 | ancom 74 | . 2 ((b ∪ c) ∩ a) = (a ∩ (b ∪ c)) | |
6 | 1, 4, 5 | le3tr1 140 | 1 ((b ∩ a) ∪ (c ∩ a)) ≤ ((b ∪ c) ∩ a) |
Colors of variables: term |
Syntax hints: ≤ wle 2 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |