![]() |
Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > QLE Home > Th. List > ledi | GIF version |
Description: Half of distributive law. (Contributed by NM, 28-Aug-1997.) |
Ref | Expression |
---|---|
ledi | ((a ∩ b) ∪ (a ∩ c)) ≤ (a ∩ (b ∪ c)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anidm 111 | . . 3 (((a ∩ b) ∪ (a ∩ c)) ∩ ((a ∩ b) ∪ (a ∩ c))) = ((a ∩ b) ∪ (a ∩ c)) | |
2 | 1 | ax-r1 35 | . 2 ((a ∩ b) ∪ (a ∩ c)) = (((a ∩ b) ∪ (a ∩ c)) ∩ ((a ∩ b) ∪ (a ∩ c))) |
3 | lea 160 | . . . . 5 (a ∩ b) ≤ a | |
4 | lea 160 | . . . . 5 (a ∩ c) ≤ a | |
5 | 3, 4 | le2or 168 | . . . 4 ((a ∩ b) ∪ (a ∩ c)) ≤ (a ∪ a) |
6 | oridm 110 | . . . 4 (a ∪ a) = a | |
7 | 5, 6 | lbtr 139 | . . 3 ((a ∩ b) ∪ (a ∩ c)) ≤ a |
8 | ancom 74 | . . . . 5 (a ∩ b) = (b ∩ a) | |
9 | lea 160 | . . . . 5 (b ∩ a) ≤ b | |
10 | 8, 9 | bltr 138 | . . . 4 (a ∩ b) ≤ b |
11 | ancom 74 | . . . . 5 (a ∩ c) = (c ∩ a) | |
12 | lea 160 | . . . . 5 (c ∩ a) ≤ c | |
13 | 11, 12 | bltr 138 | . . . 4 (a ∩ c) ≤ c |
14 | 10, 13 | le2or 168 | . . 3 ((a ∩ b) ∪ (a ∩ c)) ≤ (b ∪ c) |
15 | 7, 14 | le2an 169 | . 2 (((a ∩ b) ∪ (a ∩ c)) ∩ ((a ∩ b) ∪ (a ∩ c))) ≤ (a ∩ (b ∪ c)) |
16 | 2, 15 | bltr 138 | 1 ((a ∩ b) ∪ (a ∩ c)) ≤ (a ∩ (b ∪ c)) |
Colors of variables: term |
Syntax hints: ≤ wle 2 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
This theorem is referenced by: ledir 175 distlem 188 wwfh1 216 wwfh2 217 ska2 432 fh1 469 fh2 470 i3orlem2 553 distid 887 oadist 1019 oadistb 1020 oadistc 1022 oadistd 1023 4oadist 1044 |
Copyright terms: Public domain | W3C validator |