Proof of Theorem ledi
Step | Hyp | Ref
| Expression |
1 | | anidm 111 |
. . 3
(((a ∩ b) ∪ (a
∩ c)) ∩ ((a ∩ b) ∪
(a ∩ c))) = ((a ∩
b) ∪ (a ∩ c)) |
2 | 1 | ax-r1 35 |
. 2
((a ∩ b) ∪ (a
∩ c)) = (((a ∩ b) ∪
(a ∩ c)) ∩ ((a
∩ b) ∪ (a ∩ c))) |
3 | | lea 160 |
. . . . 5
(a ∩ b) ≤ a |
4 | | lea 160 |
. . . . 5
(a ∩ c) ≤ a |
5 | 3, 4 | le2or 168 |
. . . 4
((a ∩ b) ∪ (a
∩ c)) ≤ (a ∪ a) |
6 | | oridm 110 |
. . . 4
(a ∪ a) = a |
7 | 5, 6 | lbtr 139 |
. . 3
((a ∩ b) ∪ (a
∩ c)) ≤ a |
8 | | ancom 74 |
. . . . 5
(a ∩ b) = (b ∩
a) |
9 | | lea 160 |
. . . . 5
(b ∩ a) ≤ b |
10 | 8, 9 | bltr 138 |
. . . 4
(a ∩ b) ≤ b |
11 | | ancom 74 |
. . . . 5
(a ∩ c) = (c ∩
a) |
12 | | lea 160 |
. . . . 5
(c ∩ a) ≤ c |
13 | 11, 12 | bltr 138 |
. . . 4
(a ∩ c) ≤ c |
14 | 10, 13 | le2or 168 |
. . 3
((a ∩ b) ∪ (a
∩ c)) ≤ (b ∪ c) |
15 | 7, 14 | le2an 169 |
. 2
(((a ∩ b) ∪ (a
∩ c)) ∩ ((a ∩ b) ∪
(a ∩ c))) ≤ (a
∩ (b ∪ c)) |
16 | 2, 15 | bltr 138 |
1
((a ∩ b) ∪ (a
∩ c)) ≤ (a ∩ (b ∪
c)) |