Proof of Theorem ledio
| Step | Hyp | Ref
| Expression |
| 1 | | anidm 111 |
. . . . 5
(a ∩ a) = a |
| 2 | 1 | ax-r1 35 |
. . . 4
a = (a ∩ a) |
| 3 | | leo 158 |
. . . . 5
a ≤ (a ∪ b) |
| 4 | | leo 158 |
. . . . 5
a ≤ (a ∪ c) |
| 5 | 3, 4 | le2an 169 |
. . . 4
(a ∩ a) ≤ ((a
∪ b) ∩ (a ∪ c)) |
| 6 | 2, 5 | bltr 138 |
. . 3
a ≤ ((a ∪ b) ∩
(a ∪ c)) |
| 7 | | leo 158 |
. . . . 5
b ≤ (b ∪ a) |
| 8 | | ax-a2 31 |
. . . . 5
(b ∪ a) = (a ∪
b) |
| 9 | 7, 8 | lbtr 139 |
. . . 4
b ≤ (a ∪ b) |
| 10 | | leo 158 |
. . . . 5
c ≤ (c ∪ a) |
| 11 | | ax-a2 31 |
. . . . 5
(c ∪ a) = (a ∪
c) |
| 12 | 10, 11 | lbtr 139 |
. . . 4
c ≤ (a ∪ c) |
| 13 | 9, 12 | le2an 169 |
. . 3
(b ∩ c) ≤ ((a
∪ b) ∩ (a ∪ c)) |
| 14 | 6, 13 | le2or 168 |
. 2
(a ∪ (b ∩ c)) ≤
(((a ∪ b) ∩ (a
∪ c)) ∪ ((a ∪ b) ∩
(a ∪ c))) |
| 15 | | oridm 110 |
. 2
(((a ∪ b) ∩ (a
∪ c)) ∪ ((a ∪ b) ∩
(a ∪ c))) = ((a ∪
b) ∩ (a ∪ c)) |
| 16 | 14, 15 | lbtr 139 |
1
(a ∪ (b ∩ c)) ≤
((a ∪ b) ∩ (a
∪ c)) |