QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  ledio GIF version

Theorem ledio 176
Description: Half of distributive law. (Contributed by NM, 28-Aug-1997.)
Assertion
Ref Expression
ledio (a ∪ (bc)) ≤ ((ab) ∩ (ac))

Proof of Theorem ledio
StepHypRef Expression
1 anidm 111 . . . . 5 (aa) = a
21ax-r1 35 . . . 4 a = (aa)
3 leo 158 . . . . 5 a ≤ (ab)
4 leo 158 . . . . 5 a ≤ (ac)
53, 4le2an 169 . . . 4 (aa) ≤ ((ab) ∩ (ac))
62, 5bltr 138 . . 3 a ≤ ((ab) ∩ (ac))
7 leo 158 . . . . 5 b ≤ (ba)
8 ax-a2 31 . . . . 5 (ba) = (ab)
97, 8lbtr 139 . . . 4 b ≤ (ab)
10 leo 158 . . . . 5 c ≤ (ca)
11 ax-a2 31 . . . . 5 (ca) = (ac)
1210, 11lbtr 139 . . . 4 c ≤ (ac)
139, 12le2an 169 . . 3 (bc) ≤ ((ab) ∩ (ac))
146, 13le2or 168 . 2 (a ∪ (bc)) ≤ (((ab) ∩ (ac)) ∪ ((ab) ∩ (ac)))
15 oridm 110 . 2 (((ab) ∩ (ac)) ∪ ((ab) ∩ (ac))) = ((ab) ∩ (ac))
1614, 15lbtr 139 1 (a ∪ (bc)) ≤ ((ab) ∩ (ac))
Colors of variables: term
Syntax hints:  wle 2  wo 6  wa 7
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-t 41  df-f 42  df-le1 130  df-le2 131
This theorem is referenced by:  ledior  177  ka4lemo  228  ska13  241  wlem1  243
  Copyright terms: Public domain W3C validator