| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > lem3.3.7i5e2 | GIF version | ||
| Description: Equation 3.7 of [PavMeg1999] p. 9. The variable i in the paper is set to 5, and this is the second part of the equation. (Contributed by Roy F. Longton, 28-Jun-2005.) (Revised by Roy F. Longton, 3-Jul-2005.) |
| Ref | Expression |
|---|---|
| lem3.3.7i5e2 | (a ≡5 (a ∩ b)) = ((a ∩ b) ≡5 a) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 74 | . . . 4 ((a ∩ b) ∩ a) = (a ∩ (a ∩ b)) | |
| 2 | ancom 74 | . . . 4 ((a ∩ b)⊥ ∩ a⊥ ) = (a⊥ ∩ (a ∩ b)⊥ ) | |
| 3 | 1, 2 | 2or 72 | . . 3 (((a ∩ b) ∩ a) ∪ ((a ∩ b)⊥ ∩ a⊥ )) = ((a ∩ (a ∩ b)) ∪ (a⊥ ∩ (a ∩ b)⊥ )) |
| 4 | 3 | ax-r1 35 | . 2 ((a ∩ (a ∩ b)) ∪ (a⊥ ∩ (a ∩ b)⊥ )) = (((a ∩ b) ∩ a) ∪ ((a ∩ b)⊥ ∩ a⊥ )) |
| 5 | df-id5 1047 | . 2 (a ≡5 (a ∩ b)) = ((a ∩ (a ∩ b)) ∪ (a⊥ ∩ (a ∩ b)⊥ )) | |
| 6 | df-id5 1047 | . 2 ((a ∩ b) ≡5 a) = (((a ∩ b) ∩ a) ∪ ((a ∩ b)⊥ ∩ a⊥ )) | |
| 7 | 4, 5, 6 | 3tr1 63 | 1 (a ≡5 (a ∩ b)) = ((a ∩ b) ≡5 a) |
| Colors of variables: term |
| Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 ≡5 wid5 22 |
| This theorem was proved from axioms: ax-a2 31 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-a 40 df-id5 1047 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |