Proof of Theorem lem3.3.7i5e1
Step | Hyp | Ref
| Expression |
1 | | lear 161 |
. . . . . 6
(a ∩ (a ∩ b)) ≤
(a ∩ b) |
2 | | lea 160 |
. . . . . . 7
(a ∩ b) ≤ a |
3 | | leid 148 |
. . . . . . 7
(a ∩ b) ≤ (a ∩
b) |
4 | 2, 3 | ler2an 173 |
. . . . . 6
(a ∩ b) ≤ (a ∩
(a ∩ b)) |
5 | 1, 4 | lebi 145 |
. . . . 5
(a ∩ (a ∩ b)) =
(a ∩ b) |
6 | 2 | lecon 154 |
. . . . . 6
a⊥ ≤ (a ∩ b)⊥ |
7 | 6 | ortha 438 |
. . . . 5
(a⊥ ∩ (a ∩ b)) =
0 |
8 | 5, 7 | 2or 72 |
. . . 4
((a ∩ (a ∩ b))
∪ (a⊥ ∩ (a ∩ b))) =
((a ∩ b) ∪ 0) |
9 | 8 | ax-r5 38 |
. . 3
(((a ∩ (a ∩ b))
∪ (a⊥ ∩ (a ∩ b)))
∪ (a⊥ ∩ (a ∩ b)⊥ )) = (((a ∩ b) ∪
0) ∪ (a⊥ ∩
(a ∩ b)⊥ )) |
10 | | or0 102 |
. . . 4
((a ∩ b) ∪ 0) = (a
∩ b) |
11 | 6 | df2le2 136 |
. . . 4
(a⊥ ∩ (a ∩ b)⊥ ) = a⊥ |
12 | 10, 11 | 2or 72 |
. . 3
(((a ∩ b) ∪ 0) ∪ (a⊥ ∩ (a ∩ b)⊥ )) = ((a ∩ b) ∪
a⊥ ) |
13 | 4, 1 | lebi 145 |
. . . 4
(a ∩ b) = (a ∩
(a ∩ b)) |
14 | 11 | ax-r1 35 |
. . . 4
a⊥ = (a⊥ ∩ (a ∩ b)⊥ ) |
15 | 13, 14 | 2or 72 |
. . 3
((a ∩ b) ∪ a⊥ ) = ((a ∩ (a ∩
b)) ∪ (a⊥ ∩ (a ∩ b)⊥ )) |
16 | 9, 12, 15 | 3tr 65 |
. 2
(((a ∩ (a ∩ b))
∪ (a⊥ ∩ (a ∩ b)))
∪ (a⊥ ∩ (a ∩ b)⊥ )) = ((a ∩ (a ∩
b)) ∪ (a⊥ ∩ (a ∩ b)⊥ )) |
17 | | df-i5 48 |
. 2
(a →5 (a ∩ b)) =
(((a ∩ (a ∩ b))
∪ (a⊥ ∩ (a ∩ b)))
∪ (a⊥ ∩ (a ∩ b)⊥ )) |
18 | | df-id5 1047 |
. 2
(a ≡5 (a ∩ b)) =
((a ∩ (a ∩ b))
∪ (a⊥ ∩ (a ∩ b)⊥ )) |
19 | 16, 17, 18 | 3tr1 63 |
1
(a →5 (a ∩ b)) =
(a ≡5 (a ∩ b)) |