Proof of Theorem mccune2
| Step | Hyp | Ref
| Expression |
| 1 | | ax-a3 32 |
. . 3
((a ∪ ((a ∪ b⊥ ) ∩ (a ∪ b))⊥ ) ∪ (a ∪ ((a
∪ b⊥ ) ∩ (a ∪ b))⊥ )⊥ ) =
(a ∪ (((a ∪ b⊥ ) ∩ (a ∪ b))⊥ ∪ (a ∪ ((a
∪ b⊥ ) ∩ (a ∪ b))⊥ )⊥
)) |
| 2 | 1 | ax-r1 35 |
. 2
(a ∪ (((a ∪ b⊥ ) ∩ (a ∪ b))⊥ ∪ (a ∪ ((a
∪ b⊥ ) ∩ (a ∪ b))⊥ )⊥ )) =
((a ∪ ((a ∪ b⊥ ) ∩ (a ∪ b))⊥ ) ∪ (a ∪ ((a
∪ b⊥ ) ∩ (a ∪ b))⊥ )⊥
) |
| 3 | | anor2 89 |
. . . . 5
(a⊥ ∩
((a ∪ b⊥ ) ∩ (a ∪ b))) =
(a ∪ ((a ∪ b⊥ ) ∩ (a ∪ b))⊥
)⊥ |
| 4 | | lear 161 |
. . . . . . 7
(a⊥ ∩
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) ≤ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
| 5 | | lea 160 |
. . . . . . . . 9
(a⊥ ∩ b) ≤ a⊥ |
| 6 | | lea 160 |
. . . . . . . . 9
(a⊥ ∩ b⊥ ) ≤ a⊥ |
| 7 | 5, 6 | lel2or 170 |
. . . . . . . 8
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ≤ a⊥ |
| 8 | | id 59 |
. . . . . . . . 9
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) = ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
| 9 | 8 | bile 142 |
. . . . . . . 8
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ≤ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
| 10 | 7, 9 | ler2an 173 |
. . . . . . 7
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ≤ (a⊥ ∩ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
| 11 | 4, 10 | lebi 145 |
. . . . . 6
(a⊥ ∩
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) = ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
| 12 | | anor2 89 |
. . . . . . . 8
(a⊥ ∩ b) = (a ∪
b⊥
)⊥ |
| 13 | | anor3 90 |
. . . . . . . 8
(a⊥ ∩ b⊥ ) = (a ∪ b)⊥ |
| 14 | 12, 13 | 2or 72 |
. . . . . . 7
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) = ((a ∪ b⊥ )⊥ ∪
(a ∪ b)⊥ ) |
| 15 | | oran3 93 |
. . . . . . 7
((a ∪ b⊥ )⊥ ∪
(a ∪ b)⊥ ) = ((a ∪ b⊥ ) ∩ (a ∪ b))⊥ |
| 16 | 14, 15 | ax-r2 36 |
. . . . . 6
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) = ((a ∪ b⊥ ) ∩ (a ∪ b))⊥ |
| 17 | 11, 16 | ax-r2 36 |
. . . . 5
(a⊥ ∩
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) = ((a ∪ b⊥ ) ∩ (a ∪ b))⊥ |
| 18 | 3, 17 | 2or 72 |
. . . 4
((a⊥ ∩
((a ∪ b⊥ ) ∩ (a ∪ b)))
∪ (a⊥ ∩ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )))) = ((a ∪ ((a
∪ b⊥ ) ∩ (a ∪ b))⊥ )⊥ ∪
((a ∪ b⊥ ) ∩ (a ∪ b))⊥ ) |
| 19 | | ax-a2 31 |
. . . 4
((a ∪ ((a ∪ b⊥ ) ∩ (a ∪ b))⊥ )⊥ ∪
((a ∪ b⊥ ) ∩ (a ∪ b))⊥ ) = (((a ∪ b⊥ ) ∩ (a ∪ b))⊥ ∪ (a ∪ ((a
∪ b⊥ ) ∩ (a ∪ b))⊥ )⊥
) |
| 20 | 18, 19 | ax-r2 36 |
. . 3
((a⊥ ∩
((a ∪ b⊥ ) ∩ (a ∪ b)))
∪ (a⊥ ∩ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )))) = (((a ∪ b⊥ ) ∩ (a ∪ b))⊥ ∪ (a ∪ ((a
∪ b⊥ ) ∩ (a ∪ b))⊥ )⊥
) |
| 21 | 20 | lor 70 |
. 2
(a ∪ ((a⊥ ∩ ((a ∪ b⊥ ) ∩ (a ∪ b)))
∪ (a⊥ ∩ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))))) = (a ∪ (((a
∪ b⊥ ) ∩ (a ∪ b))⊥ ∪ (a ∪ ((a
∪ b⊥ ) ∩ (a ∪ b))⊥ )⊥
)) |
| 22 | | df-t 41 |
. 2
1 = ((a ∪ ((a ∪ b⊥ ) ∩ (a ∪ b))⊥ ) ∪ (a ∪ ((a
∪ b⊥ ) ∩ (a ∪ b))⊥ )⊥
) |
| 23 | 2, 21, 22 | 3tr1 63 |
1
(a ∪ ((a⊥ ∩ ((a ∪ b⊥ ) ∩ (a ∪ b)))
∪ (a⊥ ∩ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))))) = 1 |