Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > anor3 | GIF version |
Description: Conjunction expressed with disjunction. (Contributed by NM, 15-Dec-1997.) |
Ref | Expression |
---|---|
anor3 | (a⊥ ∩ b⊥ ) = (a ∪ b)⊥ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oran 87 | . . 3 (a ∪ b) = (a⊥ ∩ b⊥ )⊥ | |
2 | 1 | ax-r1 35 | . 2 (a⊥ ∩ b⊥ )⊥ = (a ∪ b) |
3 | 2 | con3 68 | 1 (a⊥ ∩ b⊥ ) = (a ∪ b)⊥ |
Copyright terms: Public domain | W3C validator |