Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > anor2 | GIF version |
Description: Conjunction expressed with disjunction. (Contributed by NM, 12-Aug-1997.) |
Ref | Expression |
---|---|
anor2 | (a⊥ ∩ b) = (a ∪ b⊥ )⊥ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-a 40 | . 2 (a⊥ ∩ b) = (a⊥ ⊥ ∪ b⊥ )⊥ | |
2 | ax-a1 30 | . . . . 5 a = a⊥ ⊥ | |
3 | 2 | ax-r1 35 | . . . 4 a⊥ ⊥ = a |
4 | 3 | ax-r5 38 | . . 3 (a⊥ ⊥ ∪ b⊥ ) = (a ∪ b⊥ ) |
5 | 4 | ax-r4 37 | . 2 (a⊥ ⊥ ∪ b⊥ )⊥ = (a ∪ b⊥ )⊥ |
6 | 1, 5 | ax-r2 36 | 1 (a⊥ ∩ b) = (a ∪ b⊥ )⊥ |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 |
This theorem is referenced by: oran1 91 dff 101 omlem2 128 wwcomd 214 lei3 246 mccune2 247 ni31 250 ud4lem0c 280 ud5lem0c 281 2vwomlem 365 wfh3 425 wfh4 426 fh3 471 fh4 472 i3bi 496 ni32 502 i3th1 543 i3con 551 ud2lem2 564 ud3lem1d 569 ud3lem2 571 ud3lem3 576 ud4lem1a 577 ud4lem1c 579 ud4lem2 582 ud5lem2 590 ud5lem3b 592 ud5lem3c 593 ud5lem3 594 u1lemnaa 640 u2lemnaa 641 u3lemnaa 642 u4lemnaa 643 u5lemnaa 644 u3lemnana 647 u5lemnana 649 u4lemnab 653 u5lemnab 654 u2lemnoa 661 u3lemnoa 662 u4lemnoa 663 u5lemnoa 664 u1lemnonb 675 u3lemnonb 677 u4lemnonb 678 u5lemnonb 679 u3lem1n 741 u4lem1n 742 u5lem1n 743 u3lem3n 754 u1lem11 780 u3lem13a 789 u3lem13b 790 test 802 3vded11 814 neg3antlem2 865 elimcons 868 |
Copyright terms: Public domain | W3C validator |