Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > mccune3 | GIF version |
Description: E3 - OL theorem proved by EQP. (Contributed by NM, 14-Nov-1998.) |
Ref | Expression |
---|---|
mccune3 | ((((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b)))⊥ ∪ (a⊥ ∪ b)) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-i3 46 | . . . . 5 (a →3 b) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) | |
2 | 1 | ax-r1 35 | . . . 4 (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b))) = (a →3 b) |
3 | 2 | ax-r4 37 | . . 3 (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b)))⊥ = (a →3 b)⊥ |
4 | 3 | ax-r5 38 | . 2 ((((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b)))⊥ ∪ (a⊥ ∪ b)) = ((a →3 b)⊥ ∪ (a⊥ ∪ b)) |
5 | ska15 244 | . 2 ((a →3 b)⊥ ∪ (a⊥ ∪ b)) = 1 | |
6 | 4, 5 | ax-r2 36 | 1 ((((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ (a ∩ (a⊥ ∪ b)))⊥ ∪ (a⊥ ∪ b)) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 1wt 8 →3 wi3 14 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i3 46 df-le1 130 df-le2 131 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |