QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  nom10 GIF version

Theorem nom10 307
Description: Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper. (Contributed by NM, 7-Feb-1999.)
Assertion
Ref Expression
nom10 (a0 (ab)) = (a1 b)

Proof of Theorem nom10
StepHypRef Expression
1 id 59 . 2 (a ∪ (ab)) = (a ∪ (ab))
2 df-i0 43 . 2 (a0 (ab)) = (a ∪ (ab))
3 df-i1 44 . 2 (a1 b) = (a ∪ (ab))
41, 2, 33tr1 63 1 (a0 (ab)) = (a1 b)
Colors of variables: term
Syntax hints:   = wb 1   wn 4  wo 6  wa 7  0 wi0 11  1 wi1 12
This theorem was proved from axioms:  ax-a1 30  ax-r1 35  ax-r2 36
This theorem depends on definitions:  df-i0 43  df-i1 44
This theorem is referenced by:  nom40  325  lem3.3.7i0e3  1059
  Copyright terms: Public domain W3C validator