Proof of Theorem nom40
Step | Hyp | Ref
| Expression |
1 | | nom10 307 |
. 2
(b⊥ →0
(b⊥ ∩ a⊥ )) = (b⊥ →1 a⊥ ) |
2 | | ax-a2 31 |
. . . 4
((a ∪ b)⊥ ∪ b) = (b ∪
(a ∪ b)⊥ ) |
3 | | ax-a1 30 |
. . . . 5
b = b⊥
⊥ |
4 | | ancom 74 |
. . . . . . 7
(b⊥ ∩ a⊥ ) = (a⊥ ∩ b⊥ ) |
5 | | anor3 90 |
. . . . . . 7
(a⊥ ∩ b⊥ ) = (a ∪ b)⊥ |
6 | 4, 5 | ax-r2 36 |
. . . . . 6
(b⊥ ∩ a⊥ ) = (a ∪ b)⊥ |
7 | 6 | ax-r1 35 |
. . . . 5
(a ∪ b)⊥ = (b⊥ ∩ a⊥ ) |
8 | 3, 7 | 2or 72 |
. . . 4
(b ∪ (a ∪ b)⊥ ) = (b⊥ ⊥ ∪
(b⊥ ∩ a⊥ )) |
9 | 2, 8 | ax-r2 36 |
. . 3
((a ∪ b)⊥ ∪ b) = (b⊥ ⊥ ∪
(b⊥ ∩ a⊥ )) |
10 | | df-i0 43 |
. . 3
((a ∪ b) →0 b) = ((a ∪
b)⊥ ∪ b) |
11 | | df-i0 43 |
. . 3
(b⊥ →0
(b⊥ ∩ a⊥ )) = (b⊥ ⊥ ∪
(b⊥ ∩ a⊥ )) |
12 | 9, 10, 11 | 3tr1 63 |
. 2
((a ∪ b) →0 b) = (b⊥ →0 (b⊥ ∩ a⊥ )) |
13 | | i2i1 267 |
. 2
(a →2 b) = (b⊥ →1 a⊥ ) |
14 | 1, 12, 13 | 3tr1 63 |
1
((a ∪ b) →0 b) = (a
→2 b) |