Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > df-i0 | GIF version |
Description: Define classical conditional. (Contributed by NM, 31-Oct-1998.) |
Ref | Expression |
---|---|
df-i0 | (a →0 b) = (a⊥ ∪ b) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wva | . . 3 term a | |
2 | wvb | . . 3 term b | |
3 | 1, 2 | wi0 11 | . 2 term (a →0 b) |
4 | 1 | wn 4 | . . 3 term a⊥ |
5 | 4, 2 | wo 6 | . 2 term (a⊥ ∪ b) |
6 | 3, 5 | wb 1 | 1 wff (a →0 b) = (a⊥ ∪ b) |
Colors of variables: term |
This definition is referenced by: nom10 307 nom40 325 i0cmtrcom 495 u12lem 771 3vded21 817 3vded22 818 3vded3 819 3vroa 831 negant0 857 distoa 944 d3oa 995 oadist2a 1007 oacom 1011 oacom3 1013 oagen1 1014 oagen2 1016 oadistd 1023 lem3.3.2 1046 lem3.3.3 1052 lem3.3.7i0e1 1057 lem3.4.1 1075 thm3.8i1lem 1080 lem4.6.6i0j1 1088 lem4.6.6i0j2 1089 lem4.6.6i0j3 1090 lem4.6.6i0j4 1091 lem4.6.6i1j0 1092 lem4.6.6i1j3 1094 lem4.6.6i2j0 1095 lem4.6.6i2j1 1096 lem4.6.6i2j4 1097 lem4.6.6i3j0 1098 lem4.6.6i3j1 1099 lem4.6.6i4j0 1100 lem4.6.6i4j2 1101 |
Copyright terms: Public domain | W3C validator |