Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > nom11 | GIF version |
Description: Part of Lemma 3.3(14) from "Non-Orthomodular Models..." paper. (Contributed by NM, 7-Feb-1999.) |
Ref | Expression |
---|---|
nom11 | (a →1 (a ∩ b)) = (a →1 b) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anass 76 | . . . . 5 ((a ∩ a) ∩ b) = (a ∩ (a ∩ b)) | |
2 | 1 | ax-r1 35 | . . . 4 (a ∩ (a ∩ b)) = ((a ∩ a) ∩ b) |
3 | anidm 111 | . . . . 5 (a ∩ a) = a | |
4 | 3 | ran 78 | . . . 4 ((a ∩ a) ∩ b) = (a ∩ b) |
5 | 2, 4 | ax-r2 36 | . . 3 (a ∩ (a ∩ b)) = (a ∩ b) |
6 | 5 | lor 70 | . 2 (a⊥ ∪ (a ∩ (a ∩ b))) = (a⊥ ∪ (a ∩ b)) |
7 | df-i1 44 | . 2 (a →1 (a ∩ b)) = (a⊥ ∪ (a ∩ (a ∩ b))) | |
8 | df-i1 44 | . 2 (a →1 b) = (a⊥ ∪ (a ∩ b)) | |
9 | 6, 7, 8 | 3tr1 63 | 1 (a →1 (a ∩ b)) = (a →1 b) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →1 wi1 12 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i1 44 |
This theorem is referenced by: nom42 327 lem3.3.7i1e3 1062 |
Copyright terms: Public domain | W3C validator |