Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > oa4b | GIF version |
Description: Derivation of 4-OA law variant. (Contributed by NM, 22-Dec-1998.) |
Ref | Expression |
---|---|
oa4b.1 | ((a →1 g) ∩ (a ∪ (c ∩ (((a ∩ c) ∪ ((a →1 g) ∩ (c →1 g))) ∪ (((a ∩ e) ∪ ((a →1 g) ∩ (e →1 g))) ∩ ((c ∩ e) ∪ ((c →1 g) ∩ (e →1 g)))))))) ≤ (((a ∩ g) ∪ (c ∩ g)) ∪ (e ∩ g)) |
Ref | Expression |
---|---|
oa4b | ((a →1 g) ∩ (a ∪ (c ∩ (((a ∩ c) ∪ ((a →1 g) ∩ (c →1 g))) ∪ (((a ∩ e) ∪ ((a →1 g) ∩ (e →1 g))) ∩ ((c ∩ e) ∪ ((c →1 g) ∩ (e →1 g)))))))) ≤ g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oa4b.1 | . 2 ((a →1 g) ∩ (a ∪ (c ∩ (((a ∩ c) ∪ ((a →1 g) ∩ (c →1 g))) ∪ (((a ∩ e) ∪ ((a →1 g) ∩ (e →1 g))) ∩ ((c ∩ e) ∪ ((c →1 g) ∩ (e →1 g)))))))) ≤ (((a ∩ g) ∪ (c ∩ g)) ∪ (e ∩ g)) | |
2 | lear 161 | . . . 4 (a ∩ g) ≤ g | |
3 | lear 161 | . . . 4 (c ∩ g) ≤ g | |
4 | 2, 3 | lel2or 170 | . . 3 ((a ∩ g) ∪ (c ∩ g)) ≤ g |
5 | lear 161 | . . 3 (e ∩ g) ≤ g | |
6 | 4, 5 | lel2or 170 | . 2 (((a ∩ g) ∪ (c ∩ g)) ∪ (e ∩ g)) ≤ g |
7 | 1, 6 | letr 137 | 1 ((a →1 g) ∩ (a ∪ (c ∩ (((a ∩ c) ∪ ((a →1 g) ∩ (c →1 g))) ∪ (((a ∩ e) ∪ ((a →1 g) ∩ (e →1 g))) ∩ ((c ∩ e) ∪ ((c →1 g) ∩ (e →1 g)))))))) ≤ g |
Colors of variables: term |
Syntax hints: ≤ wle 2 ∪ wo 6 ∩ wa 7 →1 wi1 12 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |