Proof of Theorem oa6to4
Step | Hyp | Ref
| Expression |
1 | | oa6to4.oa6 |
. . 3
(((a⊥ ∪
b⊥ ) ∩ (c⊥ ∪ d⊥ )) ∩ (e⊥ ∪ f⊥ )) ≤ (b⊥ ∪ (a⊥ ∩ (c⊥ ∪ (((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∪ ((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ ))))))) |
2 | 1 | oa6todual 952 |
. 2
(b ∩ (a ∪ (c ∩
(((a ∩ c) ∪ (b
∩ d)) ∪ (((a ∩ e) ∪
(b ∩ f)) ∩ ((c
∩ e) ∪ (d ∩ f)))))))
≤ (((a ∩ b) ∪ (c
∩ d)) ∪ (e ∩ f)) |
3 | | oa6to4.1 |
. . . 4
b⊥ = (a →1 g)⊥ |
4 | 3 | con1 66 |
. . 3
b = (a →1 g) |
5 | | oa6to4.2 |
. . . . . . . . 9
d⊥ = (c →1 g)⊥ |
6 | 5 | con1 66 |
. . . . . . . 8
d = (c →1 g) |
7 | 4, 6 | 2an 79 |
. . . . . . 7
(b ∩ d) = ((a
→1 g) ∩ (c →1 g)) |
8 | 7 | lor 70 |
. . . . . 6
((a ∩ c) ∪ (b
∩ d)) = ((a ∩ c) ∪
((a →1 g) ∩ (c
→1 g))) |
9 | | oa6to4.3 |
. . . . . . . . . 10
f⊥ = (e →1 g)⊥ |
10 | 9 | con1 66 |
. . . . . . . . 9
f = (e →1 g) |
11 | 4, 10 | 2an 79 |
. . . . . . . 8
(b ∩ f) = ((a
→1 g) ∩ (e →1 g)) |
12 | 11 | lor 70 |
. . . . . . 7
((a ∩ e) ∪ (b
∩ f)) = ((a ∩ e) ∪
((a →1 g) ∩ (e
→1 g))) |
13 | 6, 10 | 2an 79 |
. . . . . . . 8
(d ∩ f) = ((c
→1 g) ∩ (e →1 g)) |
14 | 13 | lor 70 |
. . . . . . 7
((c ∩ e) ∪ (d
∩ f)) = ((c ∩ e) ∪
((c →1 g) ∩ (e
→1 g))) |
15 | 12, 14 | 2an 79 |
. . . . . 6
(((a ∩ e) ∪ (b
∩ f)) ∩ ((c ∩ e) ∪
(d ∩ f))) = (((a
∩ e) ∪ ((a →1 g) ∩ (e
→1 g))) ∩ ((c ∩ e) ∪
((c →1 g) ∩ (e
→1 g)))) |
16 | 8, 15 | 2or 72 |
. . . . 5
(((a ∩ c) ∪ (b
∩ d)) ∪ (((a ∩ e) ∪
(b ∩ f)) ∩ ((c
∩ e) ∪ (d ∩ f)))) =
(((a ∩ c) ∪ ((a
→1 g) ∩ (c →1 g))) ∪ (((a
∩ e) ∪ ((a →1 g) ∩ (e
→1 g))) ∩ ((c ∩ e) ∪
((c →1 g) ∩ (e
→1 g))))) |
17 | 16 | lan 77 |
. . . 4
(c ∩ (((a ∩ c) ∪
(b ∩ d)) ∪ (((a
∩ e) ∪ (b ∩ f))
∩ ((c ∩ e) ∪ (d
∩ f))))) = (c ∩ (((a
∩ c) ∪ ((a →1 g) ∩ (c
→1 g))) ∪ (((a ∩ e) ∪
((a →1 g) ∩ (e
→1 g))) ∩ ((c ∩ e) ∪
((c →1 g) ∩ (e
→1 g)))))) |
18 | 17 | lor 70 |
. . 3
(a ∪ (c ∩ (((a
∩ c) ∪ (b ∩ d))
∪ (((a ∩ e) ∪ (b
∩ f)) ∩ ((c ∩ e) ∪
(d ∩ f)))))) = (a
∪ (c ∩ (((a ∩ c) ∪
((a →1 g) ∩ (c
→1 g))) ∪ (((a ∩ e) ∪
((a →1 g) ∩ (e
→1 g))) ∩ ((c ∩ e) ∪
((c →1 g) ∩ (e
→1 g))))))) |
19 | 4, 18 | 2an 79 |
. 2
(b ∩ (a ∪ (c ∩
(((a ∩ c) ∪ (b
∩ d)) ∪ (((a ∩ e) ∪
(b ∩ f)) ∩ ((c
∩ e) ∪ (d ∩ f)))))))
= ((a →1 g) ∩ (a
∪ (c ∩ (((a ∩ c) ∪
((a →1 g) ∩ (c
→1 g))) ∪ (((a ∩ e) ∪
((a →1 g) ∩ (e
→1 g))) ∩ ((c ∩ e) ∪
((c →1 g) ∩ (e
→1 g)))))))) |
20 | 4 | lan 77 |
. . . . 5
(a ∩ b) = (a ∩
(a →1 g)) |
21 | | ancom 74 |
. . . . 5
(a ∩ (a →1 g)) = ((a
→1 g) ∩ a) |
22 | | u1lemaa 600 |
. . . . 5
((a →1 g) ∩ a) =
(a ∩ g) |
23 | 20, 21, 22 | 3tr 65 |
. . . 4
(a ∩ b) = (a ∩
g) |
24 | 6 | lan 77 |
. . . . 5
(c ∩ d) = (c ∩
(c →1 g)) |
25 | | ancom 74 |
. . . . 5
(c ∩ (c →1 g)) = ((c
→1 g) ∩ c) |
26 | | u1lemaa 600 |
. . . . 5
((c →1 g) ∩ c) =
(c ∩ g) |
27 | 24, 25, 26 | 3tr 65 |
. . . 4
(c ∩ d) = (c ∩
g) |
28 | 23, 27 | 2or 72 |
. . 3
((a ∩ b) ∪ (c
∩ d)) = ((a ∩ g) ∪
(c ∩ g)) |
29 | 10 | lan 77 |
. . . 4
(e ∩ f) = (e ∩
(e →1 g)) |
30 | | ancom 74 |
. . . 4
(e ∩ (e →1 g)) = ((e
→1 g) ∩ e) |
31 | | u1lemaa 600 |
. . . 4
((e →1 g) ∩ e) =
(e ∩ g) |
32 | 29, 30, 31 | 3tr 65 |
. . 3
(e ∩ f) = (e ∩
g) |
33 | 28, 32 | 2or 72 |
. 2
(((a ∩ b) ∪ (c
∩ d)) ∪ (e ∩ f)) =
(((a ∩ g) ∪ (c
∩ g)) ∪ (e ∩ g)) |
34 | 2, 19, 33 | le3tr2 141 |
1
((a →1 g) ∩ (a
∪ (c ∩ (((a ∩ c) ∪
((a →1 g) ∩ (c
→1 g))) ∪ (((a ∩ e) ∪
((a →1 g) ∩ (e
→1 g))) ∩ ((c ∩ e) ∪
((c →1 g) ∩ (e
→1 g)))))))) ≤
(((a ∩ g) ∪ (c
∩ g)) ∪ (e ∩ g)) |