Quantum Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  QLE Home  >  Th. List  >  oa4ctod GIF version

Theorem oa4ctod 968
 Description: Derivation of 4-OA law variant.
Hypothesis
Ref Expression
oa4ctod.1 (a ∩ (a ∪ (b ∩ (((ab) ∪ ((a1 d) ∩ (b1 d))) ∪ (((ac) ∪ ((a1 d) ∩ (c1 d))) ∩ ((bc) ∪ ((b1 d) ∩ (c1 d)))))))) ≤ d
Assertion
Ref Expression
oa4ctod (b ∩ (((ab) ∪ ((a1 d) ∩ (b1 d))) ∪ (((ac) ∪ ((a1 d) ∩ (c1 d))) ∩ ((bc) ∪ ((b1 d) ∩ (c1 d)))))) ≤ (a1 d)

Proof of Theorem oa4ctod
StepHypRef Expression
1 oa4ctod.1 . 2 (a ∩ (a ∪ (b ∩ (((ab) ∪ ((a1 d) ∩ (b1 d))) ∪ (((ac) ∪ ((a1 d) ∩ (c1 d))) ∩ ((bc) ∪ ((b1 d) ∩ (c1 d)))))))) ≤ d
21oat 927 1 (b ∩ (((ab) ∪ ((a1 d) ∩ (b1 d))) ∪ (((ac) ∪ ((a1 d) ∩ (c1 d))) ∩ ((bc) ∪ ((b1 d) ∩ (c1 d)))))) ≤ (a1 d)
 Colors of variables: term Syntax hints:   ≤ wle 2  ⊥ wn 4   ∪ wo 6   ∩ wa 7   →1 wi1 12 This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-r3 439 This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42  df-i1 44  df-le1 130  df-le2 131 This theorem is referenced by:  axoa4d  1038
 Copyright terms: Public domain W3C validator