Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > oat | GIF version |
Description: Transformation lemma for studying the orthoarguesian law. (Contributed by NM, 26-Dec-1998.) |
Ref | Expression |
---|---|
oat.1 | (a⊥ ∩ (a ∪ b)) ≤ c |
Ref | Expression |
---|---|
oat | b ≤ (a⊥ →1 c) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leor 159 | . . 3 b ≤ (a ∪ b) | |
2 | oml 445 | . . . . 5 (a ∪ (a⊥ ∩ (a ∪ b))) = (a ∪ b) | |
3 | 2 | ax-r1 35 | . . . 4 (a ∪ b) = (a ∪ (a⊥ ∩ (a ∪ b))) |
4 | lea 160 | . . . . . 6 (a⊥ ∩ (a ∪ b)) ≤ a⊥ | |
5 | oat.1 | . . . . . 6 (a⊥ ∩ (a ∪ b)) ≤ c | |
6 | 4, 5 | ler2an 173 | . . . . 5 (a⊥ ∩ (a ∪ b)) ≤ (a⊥ ∩ c) |
7 | 6 | lelor 166 | . . . 4 (a ∪ (a⊥ ∩ (a ∪ b))) ≤ (a ∪ (a⊥ ∩ c)) |
8 | 3, 7 | bltr 138 | . . 3 (a ∪ b) ≤ (a ∪ (a⊥ ∩ c)) |
9 | 1, 8 | letr 137 | . 2 b ≤ (a ∪ (a⊥ ∩ c)) |
10 | ax-a1 30 | . . . 4 a = a⊥ ⊥ | |
11 | 10 | ax-r5 38 | . . 3 (a ∪ (a⊥ ∩ c)) = (a⊥ ⊥ ∪ (a⊥ ∩ c)) |
12 | df-i1 44 | . . . 4 (a⊥ →1 c) = (a⊥ ⊥ ∪ (a⊥ ∩ c)) | |
13 | 12 | ax-r1 35 | . . 3 (a⊥ ⊥ ∪ (a⊥ ∩ c)) = (a⊥ →1 c) |
14 | 11, 13 | ax-r2 36 | . 2 (a ∪ (a⊥ ∩ c)) = (a⊥ →1 c) |
15 | 9, 14 | lbtr 139 | 1 b ≤ (a⊥ →1 c) |
Colors of variables: term |
Syntax hints: ≤ wle 2 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →1 wi1 12 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 |
This theorem is referenced by: oa4ctod 968 |
Copyright terms: Public domain | W3C validator |