Proof of Theorem oa8todual
| Step | Hyp | Ref
| Expression |
| 1 | | oa8to5.1 |
. . 3
(((a⊥ ∪
b⊥ ) ∩ (c⊥ ∪ d⊥ )) ∩ ((e⊥ ∪ f⊥ ) ∩ (g⊥ ∪ h⊥ ))) ≤ (b⊥ ∪ (a⊥ ∩ (c⊥ ∪ ((((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )))) ∩ ((((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ )))) ∪ (((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ )) ∩ (((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ ))))))))) |
| 2 | 1 | lecon 154 |
. 2
(b⊥ ∪ (a⊥ ∩ (c⊥ ∪ ((((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )))) ∩ ((((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ )))) ∪ (((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ )) ∩ (((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ )))))))))⊥ ≤
(((a⊥ ∪ b⊥ ) ∩ (c⊥ ∪ d⊥ )) ∩ ((e⊥ ∪ f⊥ ) ∩ (g⊥ ∪ h⊥
)))⊥ |
| 3 | | ax-a1 30 |
. . . 4
b = b⊥
⊥ |
| 4 | | ax-a1 30 |
. . . . . 6
a = a⊥
⊥ |
| 5 | | ax-a1 30 |
. . . . . . . 8
c = c⊥
⊥ |
| 6 | | df-a 40 |
. . . . . . . . . . . . . 14
(a ∩ c) = (a⊥ ∪ c⊥
)⊥ |
| 7 | | df-a 40 |
. . . . . . . . . . . . . 14
(b ∩ d) = (b⊥ ∪ d⊥
)⊥ |
| 8 | 6, 7 | 2or 72 |
. . . . . . . . . . . . 13
((a ∩ c) ∪ (b
∩ d)) = ((a⊥ ∪ c⊥ )⊥ ∪
(b⊥ ∪ d⊥ )⊥
) |
| 9 | | oran3 93 |
. . . . . . . . . . . . 13
((a⊥ ∪ c⊥ )⊥ ∪
(b⊥ ∪ d⊥ )⊥ ) =
((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥
))⊥ |
| 10 | 8, 9 | ax-r2 36 |
. . . . . . . . . . . 12
((a ∩ c) ∪ (b
∩ d)) = ((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥
))⊥ |
| 11 | | df-a 40 |
. . . . . . . . . . . . . . . 16
(a ∩ g) = (a⊥ ∪ g⊥
)⊥ |
| 12 | | df-a 40 |
. . . . . . . . . . . . . . . 16
(b ∩ h) = (b⊥ ∪ h⊥
)⊥ |
| 13 | 11, 12 | 2or 72 |
. . . . . . . . . . . . . . 15
((a ∩ g) ∪ (b
∩ h)) = ((a⊥ ∪ g⊥ )⊥ ∪
(b⊥ ∪ h⊥ )⊥
) |
| 14 | | oran3 93 |
. . . . . . . . . . . . . . 15
((a⊥ ∪ g⊥ )⊥ ∪
(b⊥ ∪ h⊥ )⊥ ) =
((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥
))⊥ |
| 15 | 13, 14 | ax-r2 36 |
. . . . . . . . . . . . . 14
((a ∩ g) ∪ (b
∩ h)) = ((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥
))⊥ |
| 16 | | df-a 40 |
. . . . . . . . . . . . . . . 16
(c ∩ g) = (c⊥ ∪ g⊥
)⊥ |
| 17 | | df-a 40 |
. . . . . . . . . . . . . . . 16
(d ∩ h) = (d⊥ ∪ h⊥
)⊥ |
| 18 | 16, 17 | 2or 72 |
. . . . . . . . . . . . . . 15
((c ∩ g) ∪ (d
∩ h)) = ((c⊥ ∪ g⊥ )⊥ ∪
(d⊥ ∪ h⊥ )⊥
) |
| 19 | | oran3 93 |
. . . . . . . . . . . . . . 15
((c⊥ ∪ g⊥ )⊥ ∪
(d⊥ ∪ h⊥ )⊥ ) =
((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥
))⊥ |
| 20 | 18, 19 | ax-r2 36 |
. . . . . . . . . . . . . 14
((c ∩ g) ∪ (d
∩ h)) = ((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥
))⊥ |
| 21 | 15, 20 | 2an 79 |
. . . . . . . . . . . . 13
(((a ∩ g) ∪ (b
∩ h)) ∩ ((c ∩ g) ∪
(d ∩ h))) = (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ ))⊥ ∩
((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ ))⊥
) |
| 22 | | anor3 90 |
. . . . . . . . . . . . 13
(((a⊥ ∪
g⊥ ) ∩ (b⊥ ∪ h⊥ ))⊥ ∩
((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ ))⊥ ) =
(((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥
)))⊥ |
| 23 | 21, 22 | ax-r2 36 |
. . . . . . . . . . . 12
(((a ∩ g) ∪ (b
∩ h)) ∩ ((c ∩ g) ∪
(d ∩ h))) = (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥
)))⊥ |
| 24 | 10, 23 | 2or 72 |
. . . . . . . . . . 11
(((a ∩ c) ∪ (b
∩ d)) ∪ (((a ∩ g) ∪
(b ∩ h)) ∩ ((c
∩ g) ∪ (d ∩ h)))) =
(((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ ))⊥ ∪
(((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )))⊥
) |
| 25 | | oran3 93 |
. . . . . . . . . . 11
(((a⊥ ∪
c⊥ ) ∩ (b⊥ ∪ d⊥ ))⊥ ∪
(((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )))⊥ ) =
(((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥
))))⊥ |
| 26 | 24, 25 | ax-r2 36 |
. . . . . . . . . 10
(((a ∩ c) ∪ (b
∩ d)) ∪ (((a ∩ g) ∪
(b ∩ h)) ∩ ((c
∩ g) ∪ (d ∩ h)))) =
(((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥
))))⊥ |
| 27 | | df-a 40 |
. . . . . . . . . . . . . . . 16
(a ∩ e) = (a⊥ ∪ e⊥
)⊥ |
| 28 | | df-a 40 |
. . . . . . . . . . . . . . . 16
(b ∩ f) = (b⊥ ∪ f⊥
)⊥ |
| 29 | 27, 28 | 2or 72 |
. . . . . . . . . . . . . . 15
((a ∩ e) ∪ (b
∩ f)) = ((a⊥ ∪ e⊥ )⊥ ∪
(b⊥ ∪ f⊥ )⊥
) |
| 30 | | oran3 93 |
. . . . . . . . . . . . . . 15
((a⊥ ∪ e⊥ )⊥ ∪
(b⊥ ∪ f⊥ )⊥ ) =
((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥
))⊥ |
| 31 | 29, 30 | ax-r2 36 |
. . . . . . . . . . . . . 14
((a ∩ e) ∪ (b
∩ f)) = ((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥
))⊥ |
| 32 | | df-a 40 |
. . . . . . . . . . . . . . . . . 18
(e ∩ g) = (e⊥ ∪ g⊥
)⊥ |
| 33 | | df-a 40 |
. . . . . . . . . . . . . . . . . 18
(f ∩ h) = (f⊥ ∪ h⊥
)⊥ |
| 34 | 32, 33 | 2or 72 |
. . . . . . . . . . . . . . . . 17
((e ∩ g) ∪ (f
∩ h)) = ((e⊥ ∪ g⊥ )⊥ ∪
(f⊥ ∪ h⊥ )⊥
) |
| 35 | | oran3 93 |
. . . . . . . . . . . . . . . . 17
((e⊥ ∪ g⊥ )⊥ ∪
(f⊥ ∪ h⊥ )⊥ ) =
((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥
))⊥ |
| 36 | 34, 35 | ax-r2 36 |
. . . . . . . . . . . . . . . 16
((e ∩ g) ∪ (f
∩ h)) = ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥
))⊥ |
| 37 | 15, 36 | 2an 79 |
. . . . . . . . . . . . . . 15
(((a ∩ g) ∪ (b
∩ h)) ∩ ((e ∩ g) ∪
(f ∩ h))) = (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ ))⊥ ∩
((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ ))⊥
) |
| 38 | | anor3 90 |
. . . . . . . . . . . . . . 15
(((a⊥ ∪
g⊥ ) ∩ (b⊥ ∪ h⊥ ))⊥ ∩
((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ ))⊥ ) =
(((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥
)))⊥ |
| 39 | 37, 38 | ax-r2 36 |
. . . . . . . . . . . . . 14
(((a ∩ g) ∪ (b
∩ h)) ∩ ((e ∩ g) ∪
(f ∩ h))) = (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥
)))⊥ |
| 40 | 31, 39 | 2or 72 |
. . . . . . . . . . . . 13
(((a ∩ e) ∪ (b
∩ f)) ∪ (((a ∩ g) ∪
(b ∩ h)) ∩ ((e
∩ g) ∪ (f ∩ h)))) =
(((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ ))⊥ ∪
(((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ )))⊥
) |
| 41 | | oran3 93 |
. . . . . . . . . . . . 13
(((a⊥ ∪
e⊥ ) ∩ (b⊥ ∪ f⊥ ))⊥ ∪
(((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ )))⊥ ) =
(((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥
))))⊥ |
| 42 | 40, 41 | ax-r2 36 |
. . . . . . . . . . . 12
(((a ∩ e) ∪ (b
∩ f)) ∪ (((a ∩ g) ∪
(b ∩ h)) ∩ ((e
∩ g) ∪ (f ∩ h)))) =
(((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥
))))⊥ |
| 43 | | df-a 40 |
. . . . . . . . . . . . . . . 16
(c ∩ e) = (c⊥ ∪ e⊥
)⊥ |
| 44 | | df-a 40 |
. . . . . . . . . . . . . . . 16
(d ∩ f) = (d⊥ ∪ f⊥
)⊥ |
| 45 | 43, 44 | 2or 72 |
. . . . . . . . . . . . . . 15
((c ∩ e) ∪ (d
∩ f)) = ((c⊥ ∪ e⊥ )⊥ ∪
(d⊥ ∪ f⊥ )⊥
) |
| 46 | | oran3 93 |
. . . . . . . . . . . . . . 15
((c⊥ ∪ e⊥ )⊥ ∪
(d⊥ ∪ f⊥ )⊥ ) =
((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥
))⊥ |
| 47 | 45, 46 | ax-r2 36 |
. . . . . . . . . . . . . 14
((c ∩ e) ∪ (d
∩ f)) = ((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥
))⊥ |
| 48 | 20, 36 | 2an 79 |
. . . . . . . . . . . . . . 15
(((c ∩ g) ∪ (d
∩ h)) ∩ ((e ∩ g) ∪
(f ∩ h))) = (((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ ))⊥ ∩
((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ ))⊥
) |
| 49 | | anor3 90 |
. . . . . . . . . . . . . . 15
(((c⊥ ∪
g⊥ ) ∩ (d⊥ ∪ h⊥ ))⊥ ∩
((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ ))⊥ ) =
(((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥
)))⊥ |
| 50 | 48, 49 | ax-r2 36 |
. . . . . . . . . . . . . 14
(((c ∩ g) ∪ (d
∩ h)) ∩ ((e ∩ g) ∪
(f ∩ h))) = (((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥
)))⊥ |
| 51 | 47, 50 | 2or 72 |
. . . . . . . . . . . . 13
(((c ∩ e) ∪ (d
∩ f)) ∪ (((c ∩ g) ∪
(d ∩ h)) ∩ ((e
∩ g) ∪ (f ∩ h)))) =
(((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ ))⊥ ∪
(((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ )))⊥
) |
| 52 | | oran3 93 |
. . . . . . . . . . . . 13
(((c⊥ ∪
e⊥ ) ∩ (d⊥ ∪ f⊥ ))⊥ ∪
(((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ )))⊥ ) =
(((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ )) ∩ (((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥
))))⊥ |
| 53 | 51, 52 | ax-r2 36 |
. . . . . . . . . . . 12
(((c ∩ e) ∪ (d
∩ f)) ∪ (((c ∩ g) ∪
(d ∩ h)) ∩ ((e
∩ g) ∪ (f ∩ h)))) =
(((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ )) ∩ (((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥
))))⊥ |
| 54 | 42, 53 | 2an 79 |
. . . . . . . . . . 11
((((a ∩ e) ∪ (b
∩ f)) ∪ (((a ∩ g) ∪
(b ∩ h)) ∩ ((e
∩ g) ∪ (f ∩ h))))
∩ (((c ∩ e) ∪ (d
∩ f)) ∪ (((c ∩ g) ∪
(d ∩ h)) ∩ ((e
∩ g) ∪ (f ∩ h))))) =
((((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ ))))⊥ ∩
(((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ )) ∩ (((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ ))))⊥
) |
| 55 | | anor3 90 |
. . . . . . . . . . 11
((((a⊥ ∪
e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ ))))⊥ ∩
(((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ )) ∩ (((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ ))))⊥ ) =
((((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ )))) ∪ (((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ )) ∩ (((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥
)))))⊥ |
| 56 | 54, 55 | ax-r2 36 |
. . . . . . . . . 10
((((a ∩ e) ∪ (b
∩ f)) ∪ (((a ∩ g) ∪
(b ∩ h)) ∩ ((e
∩ g) ∪ (f ∩ h))))
∩ (((c ∩ e) ∪ (d
∩ f)) ∪ (((c ∩ g) ∪
(d ∩ h)) ∩ ((e
∩ g) ∪ (f ∩ h))))) =
((((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ )))) ∪ (((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ )) ∩ (((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥
)))))⊥ |
| 57 | 26, 56 | 2or 72 |
. . . . . . . . 9
((((a ∩ c) ∪ (b
∩ d)) ∪ (((a ∩ g) ∪
(b ∩ h)) ∩ ((c
∩ g) ∪ (d ∩ h))))
∪ ((((a ∩ e) ∪ (b
∩ f)) ∪ (((a ∩ g) ∪
(b ∩ h)) ∩ ((e
∩ g) ∪ (f ∩ h))))
∩ (((c ∩ e) ∪ (d
∩ f)) ∪ (((c ∩ g) ∪
(d ∩ h)) ∩ ((e
∩ g) ∪ (f ∩ h))))))
= ((((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ ))))⊥ ∪
((((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ )))) ∪ (((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ )) ∩ (((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ )))))⊥
) |
| 58 | | oran3 93 |
. . . . . . . . 9
((((a⊥ ∪
c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ ))))⊥ ∪
((((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ )))) ∪ (((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ )) ∩ (((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ )))))⊥ ) =
((((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )))) ∩ ((((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ )))) ∪ (((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ )) ∩ (((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥
))))))⊥ |
| 59 | 57, 58 | ax-r2 36 |
. . . . . . . 8
((((a ∩ c) ∪ (b
∩ d)) ∪ (((a ∩ g) ∪
(b ∩ h)) ∩ ((c
∩ g) ∪ (d ∩ h))))
∪ ((((a ∩ e) ∪ (b
∩ f)) ∪ (((a ∩ g) ∪
(b ∩ h)) ∩ ((e
∩ g) ∪ (f ∩ h))))
∩ (((c ∩ e) ∪ (d
∩ f)) ∪ (((c ∩ g) ∪
(d ∩ h)) ∩ ((e
∩ g) ∪ (f ∩ h))))))
= ((((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )))) ∩ ((((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ )))) ∪ (((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ )) ∩ (((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥
))))))⊥ |
| 60 | 5, 59 | 2an 79 |
. . . . . . 7
(c ∩ ((((a ∩ c) ∪
(b ∩ d)) ∪ (((a
∩ g) ∪ (b ∩ h))
∩ ((c ∩ g) ∪ (d
∩ h)))) ∪ ((((a ∩ e) ∪
(b ∩ f)) ∪ (((a
∩ g) ∪ (b ∩ h))
∩ ((e ∩ g) ∪ (f
∩ h)))) ∩ (((c ∩ e) ∪
(d ∩ f)) ∪ (((c
∩ g) ∪ (d ∩ h))
∩ ((e ∩ g) ∪ (f
∩ h))))))) = (c⊥ ⊥ ∩
((((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )))) ∩ ((((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ )))) ∪ (((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ )) ∩ (((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ ))))))⊥
) |
| 61 | | anor3 90 |
. . . . . . 7
(c⊥
⊥ ∩ ((((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )))) ∩ ((((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ )))) ∪ (((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ )) ∩ (((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ ))))))⊥ ) =
(c⊥ ∪ ((((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )))) ∩ ((((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ )))) ∪ (((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ )) ∩ (((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥
)))))))⊥ |
| 62 | 60, 61 | ax-r2 36 |
. . . . . 6
(c ∩ ((((a ∩ c) ∪
(b ∩ d)) ∪ (((a
∩ g) ∪ (b ∩ h))
∩ ((c ∩ g) ∪ (d
∩ h)))) ∪ ((((a ∩ e) ∪
(b ∩ f)) ∪ (((a
∩ g) ∪ (b ∩ h))
∩ ((e ∩ g) ∪ (f
∩ h)))) ∩ (((c ∩ e) ∪
(d ∩ f)) ∪ (((c
∩ g) ∪ (d ∩ h))
∩ ((e ∩ g) ∪ (f
∩ h))))))) = (c⊥ ∪ ((((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )))) ∩ ((((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ )))) ∪ (((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ )) ∩ (((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥
)))))))⊥ |
| 63 | 4, 62 | 2or 72 |
. . . . 5
(a ∪ (c ∩ ((((a
∩ c) ∪ (b ∩ d))
∪ (((a ∩ g) ∪ (b
∩ h)) ∩ ((c ∩ g) ∪
(d ∩ h)))) ∪ ((((a ∩ e) ∪
(b ∩ f)) ∪ (((a
∩ g) ∪ (b ∩ h))
∩ ((e ∩ g) ∪ (f
∩ h)))) ∩ (((c ∩ e) ∪
(d ∩ f)) ∪ (((c
∩ g) ∪ (d ∩ h))
∩ ((e ∩ g) ∪ (f
∩ h)))))))) = (a⊥ ⊥ ∪
(c⊥ ∪ ((((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )))) ∩ ((((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ )))) ∪ (((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ )) ∩ (((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ )))))))⊥
) |
| 64 | | oran3 93 |
. . . . 5
(a⊥
⊥ ∪ (c⊥ ∪ ((((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )))) ∩ ((((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ )))) ∪ (((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ )) ∩ (((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ )))))))⊥ ) =
(a⊥ ∩ (c⊥ ∪ ((((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )))) ∩ ((((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ )))) ∪ (((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ )) ∩ (((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥
))))))))⊥ |
| 65 | 63, 64 | ax-r2 36 |
. . . 4
(a ∪ (c ∩ ((((a
∩ c) ∪ (b ∩ d))
∪ (((a ∩ g) ∪ (b
∩ h)) ∩ ((c ∩ g) ∪
(d ∩ h)))) ∪ ((((a ∩ e) ∪
(b ∩ f)) ∪ (((a
∩ g) ∪ (b ∩ h))
∩ ((e ∩ g) ∪ (f
∩ h)))) ∩ (((c ∩ e) ∪
(d ∩ f)) ∪ (((c
∩ g) ∪ (d ∩ h))
∩ ((e ∩ g) ∪ (f
∩ h)))))))) = (a⊥ ∩ (c⊥ ∪ ((((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )))) ∩ ((((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ )))) ∪ (((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ )) ∩ (((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥
))))))))⊥ |
| 66 | 3, 65 | 2an 79 |
. . 3
(b ∩ (a ∪ (c ∩
((((a ∩ c) ∪ (b
∩ d)) ∪ (((a ∩ g) ∪
(b ∩ h)) ∩ ((c
∩ g) ∪ (d ∩ h))))
∪ ((((a ∩ e) ∪ (b
∩ f)) ∪ (((a ∩ g) ∪
(b ∩ h)) ∩ ((e
∩ g) ∪ (f ∩ h))))
∩ (((c ∩ e) ∪ (d
∩ f)) ∪ (((c ∩ g) ∪
(d ∩ h)) ∩ ((e
∩ g) ∪ (f ∩ h))))))))) = (b⊥ ⊥ ∩
(a⊥ ∩ (c⊥ ∪ ((((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )))) ∩ ((((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ )))) ∪ (((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ )) ∩ (((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ ))))))))⊥
) |
| 67 | | anor3 90 |
. . 3
(b⊥
⊥ ∩ (a⊥ ∩ (c⊥ ∪ ((((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )))) ∩ ((((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ )))) ∪ (((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ )) ∩ (((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ ))))))))⊥ ) =
(b⊥ ∪ (a⊥ ∩ (c⊥ ∪ ((((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )))) ∩ ((((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ )))) ∪ (((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ )) ∩ (((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥
)))))))))⊥ |
| 68 | 66, 67 | ax-r2 36 |
. 2
(b ∩ (a ∪ (c ∩
((((a ∩ c) ∪ (b
∩ d)) ∪ (((a ∩ g) ∪
(b ∩ h)) ∩ ((c
∩ g) ∪ (d ∩ h))))
∪ ((((a ∩ e) ∪ (b
∩ f)) ∪ (((a ∩ g) ∪
(b ∩ h)) ∩ ((e
∩ g) ∪ (f ∩ h))))
∩ (((c ∩ e) ∪ (d
∩ f)) ∪ (((c ∩ g) ∪
(d ∩ h)) ∩ ((e
∩ g) ∪ (f ∩ h))))))))) = (b⊥ ∪ (a⊥ ∩ (c⊥ ∪ ((((a⊥ ∪ c⊥ ) ∩ (b⊥ ∪ d⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )))) ∩ ((((a⊥ ∪ e⊥ ) ∩ (b⊥ ∪ f⊥ )) ∩ (((a⊥ ∪ g⊥ ) ∩ (b⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥ )))) ∪ (((c⊥ ∪ e⊥ ) ∩ (d⊥ ∪ f⊥ )) ∩ (((c⊥ ∪ g⊥ ) ∩ (d⊥ ∪ h⊥ )) ∪ ((e⊥ ∪ g⊥ ) ∩ (f⊥ ∪ h⊥
)))))))))⊥ |
| 69 | | df-a 40 |
. . . . . 6
(a ∩ b) = (a⊥ ∪ b⊥
)⊥ |
| 70 | | df-a 40 |
. . . . . 6
(c ∩ d) = (c⊥ ∪ d⊥
)⊥ |
| 71 | 69, 70 | 2or 72 |
. . . . 5
((a ∩ b) ∪ (c
∩ d)) = ((a⊥ ∪ b⊥ )⊥ ∪
(c⊥ ∪ d⊥ )⊥
) |
| 72 | | oran3 93 |
. . . . 5
((a⊥ ∪ b⊥ )⊥ ∪
(c⊥ ∪ d⊥ )⊥ ) =
((a⊥ ∪ b⊥ ) ∩ (c⊥ ∪ d⊥
))⊥ |
| 73 | 71, 72 | ax-r2 36 |
. . . 4
((a ∩ b) ∪ (c
∩ d)) = ((a⊥ ∪ b⊥ ) ∩ (c⊥ ∪ d⊥
))⊥ |
| 74 | | df-a 40 |
. . . . . 6
(e ∩ f) = (e⊥ ∪ f⊥
)⊥ |
| 75 | | df-a 40 |
. . . . . 6
(g ∩ h) = (g⊥ ∪ h⊥
)⊥ |
| 76 | 74, 75 | 2or 72 |
. . . . 5
((e ∩ f) ∪ (g
∩ h)) = ((e⊥ ∪ f⊥ )⊥ ∪
(g⊥ ∪ h⊥ )⊥
) |
| 77 | | oran3 93 |
. . . . 5
((e⊥ ∪ f⊥ )⊥ ∪
(g⊥ ∪ h⊥ )⊥ ) =
((e⊥ ∪ f⊥ ) ∩ (g⊥ ∪ h⊥
))⊥ |
| 78 | 76, 77 | ax-r2 36 |
. . . 4
((e ∩ f) ∪ (g
∩ h)) = ((e⊥ ∪ f⊥ ) ∩ (g⊥ ∪ h⊥
))⊥ |
| 79 | 73, 78 | 2or 72 |
. . 3
(((a ∩ b) ∪ (c
∩ d)) ∪ ((e ∩ f) ∪
(g ∩ h))) = (((a⊥ ∪ b⊥ ) ∩ (c⊥ ∪ d⊥ ))⊥ ∪
((e⊥ ∪ f⊥ ) ∩ (g⊥ ∪ h⊥ ))⊥
) |
| 80 | | oran3 93 |
. . 3
(((a⊥ ∪
b⊥ ) ∩ (c⊥ ∪ d⊥ ))⊥ ∪
((e⊥ ∪ f⊥ ) ∩ (g⊥ ∪ h⊥ ))⊥ ) =
(((a⊥ ∪ b⊥ ) ∩ (c⊥ ∪ d⊥ )) ∩ ((e⊥ ∪ f⊥ ) ∩ (g⊥ ∪ h⊥
)))⊥ |
| 81 | 79, 80 | ax-r2 36 |
. 2
(((a ∩ b) ∪ (c
∩ d)) ∪ ((e ∩ f) ∪
(g ∩ h))) = (((a⊥ ∪ b⊥ ) ∩ (c⊥ ∪ d⊥ )) ∩ ((e⊥ ∪ f⊥ ) ∩ (g⊥ ∪ h⊥
)))⊥ |
| 82 | 2, 68, 81 | le3tr1 140 |
1
(b ∩ (a ∪ (c ∩
((((a ∩ c) ∪ (b
∩ d)) ∪ (((a ∩ g) ∪
(b ∩ h)) ∩ ((c
∩ g) ∪ (d ∩ h))))
∪ ((((a ∩ e) ∪ (b
∩ f)) ∪ (((a ∩ g) ∪
(b ∩ h)) ∩ ((e
∩ g) ∪ (f ∩ h))))
∩ (((c ∩ e) ∪ (d
∩ f)) ∪ (((c ∩ g) ∪
(d ∩ h)) ∩ ((e
∩ g) ∪ (f ∩ h))))))))) ≤ (((a ∩ b) ∪
(c ∩ d)) ∪ ((e
∩ f) ∪ (g ∩ h))) |