| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > oaidlem1 | GIF version | ||
| Description: Lemma for OA identity-like law. (Contributed by NM, 22-Jan-1999.) |
| Ref | Expression |
|---|---|
| oaidlem1.1 | (a ∩ b) ≤ c |
| Ref | Expression |
|---|---|
| oaidlem1 | (a⊥ ∪ (b →1 c)) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-i1 44 | . . 3 (b →1 c) = (b⊥ ∪ (b ∩ c)) | |
| 2 | 1 | lor 70 | . 2 (a⊥ ∪ (b →1 c)) = (a⊥ ∪ (b⊥ ∪ (b ∩ c))) |
| 3 | oran3 93 | . . . 4 (a⊥ ∪ b⊥ ) = (a ∩ b)⊥ | |
| 4 | 3 | ax-r5 38 | . . 3 ((a⊥ ∪ b⊥ ) ∪ (b ∩ c)) = ((a ∩ b)⊥ ∪ (b ∩ c)) |
| 5 | ax-a3 32 | . . 3 ((a⊥ ∪ b⊥ ) ∪ (b ∩ c)) = (a⊥ ∪ (b⊥ ∪ (b ∩ c))) | |
| 6 | lear 161 | . . . . 5 (a ∩ b) ≤ b | |
| 7 | oaidlem1.1 | . . . . 5 (a ∩ b) ≤ c | |
| 8 | 6, 7 | ler2an 173 | . . . 4 (a ∩ b) ≤ (b ∩ c) |
| 9 | 8 | sklem 230 | . . 3 ((a ∩ b)⊥ ∪ (b ∩ c)) = 1 |
| 10 | 4, 5, 9 | 3tr2 64 | . 2 (a⊥ ∪ (b⊥ ∪ (b ∩ c))) = 1 |
| 11 | 2, 10 | ax-r2 36 | 1 (a⊥ ∪ (b →1 c)) = 1 |
| Colors of variables: term |
| Syntax hints: = wb 1 ≤ wle 2 ⊥ wn 4 ∪ wo 6 ∩ wa 7 1wt 8 →1 wi1 12 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-i1 44 df-le1 130 df-le2 131 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |