Proof of Theorem womle2a
| Step | Hyp | Ref
| Expression |
| 1 | | or4 84 |
. . 3
(((a →2 b)⊥ ∪ (a →2 b)⊥ ) ∪ ((a →1 b) ∪ a⊥ )) = (((a →2 b)⊥ ∪ (a →1 b)) ∪ ((a
→2 b)⊥
∪ a⊥
)) |
| 2 | | oridm 110 |
. . . 4
((a →2 b)⊥ ∪ (a →2 b)⊥ ) = (a →2 b)⊥ |
| 3 | | df-i1 44 |
. . . . . 6
(a →1 b) = (a⊥ ∪ (a ∩ b)) |
| 4 | 3 | ax-r5 38 |
. . . . 5
((a →1 b) ∪ a⊥ ) = ((a⊥ ∪ (a ∩ b))
∪ a⊥
) |
| 5 | | oridm 110 |
. . . . . . 7
(a⊥ ∪ a⊥ ) = a⊥ |
| 6 | 5 | ax-r5 38 |
. . . . . 6
((a⊥ ∪ a⊥ ) ∪ (a ∩ b)) =
(a⊥ ∪ (a ∩ b)) |
| 7 | | or32 82 |
. . . . . 6
((a⊥ ∪
(a ∩ b)) ∪ a⊥ ) = ((a⊥ ∪ a⊥ ) ∪ (a ∩ b)) |
| 8 | 6, 7, 3 | 3tr1 63 |
. . . . 5
((a⊥ ∪
(a ∩ b)) ∪ a⊥ ) = (a →1 b) |
| 9 | 4, 8 | ax-r2 36 |
. . . 4
((a →1 b) ∪ a⊥ ) = (a →1 b) |
| 10 | 2, 9 | 2or 72 |
. . 3
(((a →2 b)⊥ ∪ (a →2 b)⊥ ) ∪ ((a →1 b) ∪ a⊥ )) = ((a →2 b)⊥ ∪ (a →1 b)) |
| 11 | | ax-a2 31 |
. . . . 5
((a →2 b)⊥ ∪ a⊥ ) = (a⊥ ∪ (a →2 b)⊥ ) |
| 12 | | oran3 93 |
. . . . 5
(a⊥ ∪ (a →2 b)⊥ ) = (a ∩ (a
→2 b))⊥ |
| 13 | 11, 12 | ax-r2 36 |
. . . 4
((a →2 b)⊥ ∪ a⊥ ) = (a ∩ (a
→2 b))⊥ |
| 14 | 13 | lor 70 |
. . 3
(((a →2 b)⊥ ∪ (a →1 b)) ∪ ((a
→2 b)⊥
∪ a⊥ )) = (((a →2 b)⊥ ∪ (a →1 b)) ∪ (a
∩ (a →2 b))⊥ ) |
| 15 | 1, 10, 14 | 3tr2 64 |
. 2
((a →2 b)⊥ ∪ (a →1 b)) = (((a
→2 b)⊥
∪ (a →1 b)) ∪ (a
∩ (a →2 b))⊥ ) |
| 16 | | le1 146 |
. . 3
(((a →2 b)⊥ ∪ (a →1 b)) ∪ (a
∩ (a →2 b))⊥ ) ≤ 1 |
| 17 | | df-t 41 |
. . . 4
1 = ((a ∩ (a →2 b)) ∪ (a
∩ (a →2 b))⊥ ) |
| 18 | | womle2a.1 |
. . . . 5
(a ∩ (a →2 b)) ≤ ((a
→2 b)⊥
∪ (a →1 b)) |
| 19 | 18 | leror 152 |
. . . 4
((a ∩ (a →2 b)) ∪ (a
∩ (a →2 b))⊥ ) ≤ (((a →2 b)⊥ ∪ (a →1 b)) ∪ (a
∩ (a →2 b))⊥ ) |
| 20 | 17, 19 | bltr 138 |
. . 3
1 ≤ (((a →2
b)⊥ ∪ (a →1 b)) ∪ (a
∩ (a →2 b))⊥ ) |
| 21 | 16, 20 | lebi 145 |
. 2
(((a →2 b)⊥ ∪ (a →1 b)) ∪ (a
∩ (a →2 b))⊥ ) = 1 |
| 22 | 15, 21 | ax-r2 36 |
1
((a →2 b)⊥ ∪ (a →1 b)) = 1 |