| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > sklem | GIF version | ||
| Description: Soundness lemma. (Contributed by NM, 30-Aug-1997.) |
| Ref | Expression |
|---|---|
| sklem.1 | a ≤ b |
| Ref | Expression |
|---|---|
| sklem | (a⊥ ∪ b) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | or12 80 | . . 3 (a⊥ ∪ (a ∪ b)) = (a ∪ (a⊥ ∪ b)) | |
| 2 | df-t 41 | . . . . . 6 1 = (a ∪ a⊥ ) | |
| 3 | 2 | ax-r5 38 | . . . . 5 (1 ∪ b) = ((a ∪ a⊥ ) ∪ b) |
| 4 | 3 | ax-r1 35 | . . . 4 ((a ∪ a⊥ ) ∪ b) = (1 ∪ b) |
| 5 | ax-a3 32 | . . . 4 ((a ∪ a⊥ ) ∪ b) = (a ∪ (a⊥ ∪ b)) | |
| 6 | ax-a2 31 | . . . 4 (1 ∪ b) = (b ∪ 1) | |
| 7 | 4, 5, 6 | 3tr2 64 | . . 3 (a ∪ (a⊥ ∪ b)) = (b ∪ 1) |
| 8 | 1, 7 | ax-r2 36 | . 2 (a⊥ ∪ (a ∪ b)) = (b ∪ 1) |
| 9 | sklem.1 | . . . 4 a ≤ b | |
| 10 | 9 | df-le2 131 | . . 3 (a ∪ b) = b |
| 11 | 10 | lor 70 | . 2 (a⊥ ∪ (a ∪ b)) = (a⊥ ∪ b) |
| 12 | or1 104 | . 2 (b ∪ 1) = 1 | |
| 13 | 8, 11, 12 | 3tr2 64 | 1 (a⊥ ∪ b) = 1 |
| Colors of variables: term |
| Syntax hints: = wb 1 ≤ wle 2 ⊥ wn 4 ∪ wo 6 1wt 8 |
| This theorem was proved from axioms: ax-a2 31 ax-a3 32 ax-a4 33 ax-r1 35 ax-r2 36 ax-r5 38 |
| This theorem depends on definitions: df-t 41 df-le2 131 |
| This theorem is referenced by: ska13 241 ska15 244 lei3 246 oaidlem1 294 id5id0 352 u1lemle1 710 u2lemle1 711 u3lemle1 712 u4lemle1 713 u5lemle1 714 lem3.3.3 1052 lem3.3.7i4e1 1069 lem3.3.7i4e2 1070 lem4.6.7 1103 |
| Copyright terms: Public domain | W3C validator |