| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > ska8 | GIF version | ||
| Description: Soundness theorem for Kalmbach's quantum propositional logic axiom KA8. (Contributed by NM, 30-Aug-1997.) |
| Ref | Expression |
|---|---|
| ska8 | ((a⊥ ∩ a) ≡ ((a⊥ ∩ a) ∩ b)) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an0 108 | . . . . 5 (b ∩ 0) = 0 | |
| 2 | 1 | ax-r1 35 | . . . 4 0 = (b ∩ 0) |
| 3 | ancom 74 | . . . 4 (b ∩ 0) = (0 ∩ b) | |
| 4 | 2, 3 | ax-r2 36 | . . 3 0 = (0 ∩ b) |
| 5 | dff 101 | . . . 4 0 = (a ∩ a⊥ ) | |
| 6 | ancom 74 | . . . 4 (a ∩ a⊥ ) = (a⊥ ∩ a) | |
| 7 | 5, 6 | ax-r2 36 | . . 3 0 = (a⊥ ∩ a) |
| 8 | 7 | ran 78 | . . 3 (0 ∩ b) = ((a⊥ ∩ a) ∩ b) |
| 9 | 4, 7, 8 | 3tr2 64 | . 2 (a⊥ ∩ a) = ((a⊥ ∩ a) ∩ b) |
| 10 | 9 | bi1 118 | 1 ((a⊥ ∩ a) ≡ ((a⊥ ∩ a) ∩ b)) = 1 |
| Colors of variables: term |
| Syntax hints: = wb 1 ⊥ wn 4 ≡ tb 5 ∩ wa 7 1wt 8 0wf 9 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |