Quantum Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  QLE Home  >  Th. List  >  ska8 GIF version

Theorem ska8 236
 Description: Soundness theorem for Kalmbach's quantum propositional logic axiom KA8.
Assertion
Ref Expression
ska8 ((aa) ≡ ((aa) ∩ b)) = 1

Proof of Theorem ska8
StepHypRef Expression
1 an0 108 . . . . 5 (b ∩ 0) = 0
21ax-r1 35 . . . 4 0 = (b ∩ 0)
3 ancom 74 . . . 4 (b ∩ 0) = (0 ∩ b)
42, 3ax-r2 36 . . 3 0 = (0 ∩ b)
5 dff 101 . . . 4 0 = (aa )
6 ancom 74 . . . 4 (aa ) = (aa)
75, 6ax-r2 36 . . 3 0 = (aa)
87ran 78 . . 3 (0 ∩ b) = ((aa) ∩ b)
94, 7, 83tr2 64 . 2 (aa) = ((aa) ∩ b)
109bi1 118 1 ((aa) ≡ ((aa) ∩ b)) = 1
 Colors of variables: term Syntax hints:   = wb 1  ⊥ wn 4   ≡ tb 5   ∩ wa 7  1wt 8  0wf 9 This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a4 33  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38 This theorem depends on definitions:  df-b 39  df-a 40  df-t 41  df-f 42 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator