Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > dff | GIF version |
Description: Alternate definition of "false". (Contributed by NM, 29-Aug-1997.) |
Ref | Expression |
---|---|
dff | 0 = (a ∩ a⊥ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dff2 100 | . 2 0 = (a ∪ a⊥ )⊥ | |
2 | ancom 74 | . . . 4 (a ∩ a⊥ ) = (a⊥ ∩ a) | |
3 | anor2 89 | . . . 4 (a⊥ ∩ a) = (a ∪ a⊥ )⊥ | |
4 | 2, 3 | ax-r2 36 | . . 3 (a ∩ a⊥ ) = (a ∪ a⊥ )⊥ |
5 | 4 | ax-r1 35 | . 2 (a ∪ a⊥ )⊥ = (a ∩ a⊥ ) |
6 | 1, 5 | ax-r2 36 | 1 0 = (a ∩ a⊥ ) |
Copyright terms: Public domain | W3C validator |