Proof of Theorem testmod3
Step | Hyp | Ref
| Expression |
1 | | orcom 73 |
. . . 4
(a ∪ (((c ∪ a) ∪
((b ∪ c) ∩ (d
∪ a))) ∩ (b ∩ (d ∪
((a ∪ c) ∩ (b
∪ d)))))) = ((((c ∪ a) ∪
((b ∪ c) ∩ (d
∪ a))) ∩ (b ∩ (d ∪
((a ∪ c) ∩ (b
∪ d))))) ∪ a) |
2 | | leor 159 |
. . . . . 6
a ≤ (c ∪ a) |
3 | 2 | ler 149 |
. . . . 5
a ≤ ((c ∪ a) ∪
((b ∪ c) ∩ (d
∪ a))) |
4 | 3 | mli 1126 |
. . . 4
((((c ∪ a) ∪ ((b
∪ c) ∩ (d ∪ a)))
∩ (b ∩ (d ∪ ((a
∪ c) ∩ (b ∪ d)))))
∪ a) = (((c ∪ a) ∪
((b ∪ c) ∩ (d
∪ a))) ∩ ((b ∩ (d ∪
((a ∪ c) ∩ (b
∪ d)))) ∪ a)) |
5 | 1, 4 | tr 62 |
. . 3
(a ∪ (((c ∪ a) ∪
((b ∪ c) ∩ (d
∪ a))) ∩ (b ∩ (d ∪
((a ∪ c) ∩ (b
∪ d)))))) = (((c ∪ a) ∪
((b ∪ c) ∩ (d
∪ a))) ∩ ((b ∩ (d ∪
((a ∪ c) ∩ (b
∪ d)))) ∪ a)) |
6 | | orcom 73 |
. . . 4
((b ∩ (d ∪ ((a
∪ c) ∩ (b ∪ d))))
∪ a) = (a ∪ (b ∩
(d ∪ ((a ∪ c) ∩
(b ∪ d))))) |
7 | 6 | lan 77 |
. . 3
(((c ∪ a) ∪ ((b
∪ c) ∩ (d ∪ a)))
∩ ((b ∩ (d ∪ ((a
∪ c) ∩ (b ∪ d))))
∪ a)) = (((c ∪ a) ∪
((b ∪ c) ∩ (d
∪ a))) ∩ (a ∪ (b ∩
(d ∪ ((a ∪ c) ∩
(b ∪ d)))))) |
8 | 5, 7 | tr 62 |
. 2
(a ∪ (((c ∪ a) ∪
((b ∪ c) ∩ (d
∪ a))) ∩ (b ∩ (d ∪
((a ∪ c) ∩ (b
∪ d)))))) = (((c ∪ a) ∪
((b ∪ c) ∩ (d
∪ a))) ∩ (a ∪ (b ∩
(d ∪ ((a ∪ c) ∩
(b ∪ d)))))) |
9 | 8 | cm 61 |
1
(((c ∪ a) ∪ ((b
∪ c) ∩ (d ∪ a)))
∩ (a ∪ (b ∩ (d ∪
((a ∪ c) ∩ (b
∪ d)))))) = (a ∪ (((c
∪ a) ∪ ((b ∪ c) ∩
(d ∪ a))) ∩ (b
∩ (d ∪ ((a ∪ c) ∩
(b ∪ d)))))) |