Proof of Theorem testmod2expanded
| Step | Hyp | Ref
| Expression |
| 1 | | orass 75 |
. . . . . . . . . . . . 13
((a ∪ c) ∪ d) =
(a ∪ (c ∪ d)) |
| 2 | 1 | lan 77 |
. . . . . . . . . . . 12
((a ∪ b) ∩ ((a
∪ c) ∪ d)) = ((a ∪
b) ∩ (a ∪ (c ∪
d))) |
| 3 | 2 | cm 61 |
. . . . . . . . . . 11
((a ∪ b) ∩ (a
∪ (c ∪ d))) = ((a ∪
b) ∩ ((a ∪ c) ∪
d)) |
| 4 | | leo 158 |
. . . . . . . . . . . . 13
a ≤ (a ∪ c) |
| 5 | 4 | ler 149 |
. . . . . . . . . . . 12
a ≤ ((a ∪ c) ∪
d) |
| 6 | 5 | mlduali 1128 |
. . . . . . . . . . 11
((a ∪ b) ∩ ((a
∪ c) ∪ d)) = (a ∪
(b ∩ ((a ∪ c) ∪
d))) |
| 7 | 3, 6 | tr 62 |
. . . . . . . . . 10
((a ∪ b) ∩ (a
∪ (c ∪ d))) = (a ∪
(b ∩ ((a ∪ c) ∪
d))) |
| 8 | | leo 158 |
. . . . . . . . . . . . . . 15
b ≤ (b ∪ d) |
| 9 | | leor 159 |
. . . . . . . . . . . . . . 15
b ≤ ((a ∪ c) ∪
b) |
| 10 | 8, 9 | ler2an 173 |
. . . . . . . . . . . . . 14
b ≤ ((b ∪ d) ∩
((a ∪ c) ∪ b)) |
| 11 | 10 | df2le2 136 |
. . . . . . . . . . . . 13
(b ∩ ((b ∪ d) ∩
((a ∪ c) ∪ b))) =
b |
| 12 | 11 | ran 78 |
. . . . . . . . . . . 12
((b ∩ ((b ∪ d) ∩
((a ∪ c) ∪ b)))
∩ ((a ∪ c) ∪ d)) =
(b ∩ ((a ∪ c) ∪
d)) |
| 13 | 12 | cm 61 |
. . . . . . . . . . 11
(b ∩ ((a ∪ c) ∪
d)) = ((b ∩ ((b
∪ d) ∩ ((a ∪ c) ∪
b))) ∩ ((a ∪ c) ∪
d)) |
| 14 | 13 | lor 70 |
. . . . . . . . . 10
(a ∪ (b ∩ ((a
∪ c) ∪ d))) = (a ∪
((b ∩ ((b ∪ d) ∩
((a ∪ c) ∪ b)))
∩ ((a ∪ c) ∪ d))) |
| 15 | 7, 14 | tr 62 |
. . . . . . . . 9
((a ∪ b) ∩ (a
∪ (c ∪ d))) = (a ∪
((b ∩ ((b ∪ d) ∩
((a ∪ c) ∪ b)))
∩ ((a ∪ c) ∪ d))) |
| 16 | | anass 76 |
. . . . . . . . . 10
((b ∩ ((b ∪ d) ∩
((a ∪ c) ∪ b)))
∩ ((a ∪ c) ∪ d)) =
(b ∩ (((b ∪ d) ∩
((a ∪ c) ∪ b))
∩ ((a ∪ c) ∪ d))) |
| 17 | 16 | lor 70 |
. . . . . . . . 9
(a ∪ ((b ∩ ((b
∪ d) ∩ ((a ∪ c) ∪
b))) ∩ ((a ∪ c) ∪
d))) = (a ∪ (b ∩
(((b ∪ d) ∩ ((a
∪ c) ∪ b)) ∩ ((a
∪ c) ∪ d)))) |
| 18 | 15, 17 | tr 62 |
. . . . . . . 8
((a ∪ b) ∩ (a
∪ (c ∪ d))) = (a ∪
(b ∩ (((b ∪ d) ∩
((a ∪ c) ∪ b))
∩ ((a ∪ c) ∪ d)))) |
| 19 | | an32 83 |
. . . . . . . . . 10
(((b ∪ d) ∩ ((a
∪ c) ∪ b)) ∩ ((a
∪ c) ∪ d)) = (((b ∪
d) ∩ ((a ∪ c) ∪
d)) ∩ ((a ∪ c) ∪
b)) |
| 20 | 19 | lan 77 |
. . . . . . . . 9
(b ∩ (((b ∪ d) ∩
((a ∪ c) ∪ b))
∩ ((a ∪ c) ∪ d))) =
(b ∩ (((b ∪ d) ∩
((a ∪ c) ∪ d))
∩ ((a ∪ c) ∪ b))) |
| 21 | 20 | lor 70 |
. . . . . . . 8
(a ∪ (b ∩ (((b
∪ d) ∩ ((a ∪ c) ∪
b)) ∩ ((a ∪ c) ∪
d)))) = (a ∪ (b ∩
(((b ∪ d) ∩ ((a
∪ c) ∪ d)) ∩ ((a
∪ c) ∪ b)))) |
| 22 | 18, 21 | tr 62 |
. . . . . . 7
((a ∪ b) ∩ (a
∪ (c ∪ d))) = (a ∪
(b ∩ (((b ∪ d) ∩
((a ∪ c) ∪ d))
∩ ((a ∪ c) ∪ b)))) |
| 23 | | leor 159 |
. . . . . . . . . . 11
d ≤ (b ∪ d) |
| 24 | 23 | mldual2i 1127 |
. . . . . . . . . 10
((b ∪ d) ∩ ((a
∪ c) ∪ d)) = (((b ∪
d) ∩ (a ∪ c))
∪ d) |
| 25 | 24 | ran 78 |
. . . . . . . . 9
(((b ∪ d) ∩ ((a
∪ c) ∪ d)) ∩ ((a
∪ c) ∪ b)) = ((((b
∪ d) ∩ (a ∪ c))
∪ d) ∩ ((a ∪ c) ∪
b)) |
| 26 | 25 | lan 77 |
. . . . . . . 8
(b ∩ (((b ∪ d) ∩
((a ∪ c) ∪ d))
∩ ((a ∪ c) ∪ b))) =
(b ∩ ((((b ∪ d) ∩
(a ∪ c)) ∪ d)
∩ ((a ∪ c) ∪ b))) |
| 27 | 26 | lor 70 |
. . . . . . 7
(a ∪ (b ∩ (((b
∪ d) ∩ ((a ∪ c) ∪
d)) ∩ ((a ∪ c) ∪
b)))) = (a ∪ (b ∩
((((b ∪ d) ∩ (a
∪ c)) ∪ d) ∩ ((a
∪ c) ∪ b)))) |
| 28 | 22, 27 | tr 62 |
. . . . . 6
((a ∪ b) ∩ (a
∪ (c ∪ d))) = (a ∪
(b ∩ ((((b ∪ d) ∩
(a ∪ c)) ∪ d)
∩ ((a ∪ c) ∪ b)))) |
| 29 | | ancom 74 |
. . . . . . . . . 10
((b ∪ d) ∩ (a
∪ c)) = ((a ∪ c) ∩
(b ∪ d)) |
| 30 | 29 | ror 71 |
. . . . . . . . 9
(((b ∪ d) ∩ (a
∪ c)) ∪ d) = (((a ∪
c) ∩ (b ∪ d))
∪ d) |
| 31 | 30 | ran 78 |
. . . . . . . 8
((((b ∪ d) ∩ (a
∪ c)) ∪ d) ∩ ((a
∪ c) ∪ b)) = ((((a
∪ c) ∩ (b ∪ d))
∪ d) ∩ ((a ∪ c) ∪
b)) |
| 32 | 31 | lan 77 |
. . . . . . 7
(b ∩ ((((b ∪ d) ∩
(a ∪ c)) ∪ d)
∩ ((a ∪ c) ∪ b))) =
(b ∩ ((((a ∪ c) ∩
(b ∪ d)) ∪ d)
∩ ((a ∪ c) ∪ b))) |
| 33 | 32 | lor 70 |
. . . . . 6
(a ∪ (b ∩ ((((b
∪ d) ∩ (a ∪ c))
∪ d) ∩ ((a ∪ c) ∪
b)))) = (a ∪ (b ∩
((((a ∪ c) ∩ (b
∪ d)) ∪ d) ∩ ((a
∪ c) ∪ b)))) |
| 34 | 28, 33 | tr 62 |
. . . . 5
((a ∪ b) ∩ (a
∪ (c ∪ d))) = (a ∪
(b ∩ ((((a ∪ c) ∩
(b ∪ d)) ∪ d)
∩ ((a ∪ c) ∪ b)))) |
| 35 | | lea 160 |
. . . . . . . . . . . 12
((a ∪ c) ∩ (b
∪ d)) ≤ (a ∪ c) |
| 36 | 35 | leror 152 |
. . . . . . . . . . 11
(((a ∪ c) ∩ (b
∪ d)) ∪ d) ≤ ((a
∪ c) ∪ d) |
| 37 | 36 | df2le2 136 |
. . . . . . . . . 10
((((a ∪ c) ∩ (b
∪ d)) ∪ d) ∩ ((a
∪ c) ∪ d)) = (((a ∪
c) ∩ (b ∪ d))
∪ d) |
| 38 | 37 | ran 78 |
. . . . . . . . 9
(((((a ∪ c) ∩ (b
∪ d)) ∪ d) ∩ ((a
∪ c) ∪ d)) ∩ ((a
∪ c) ∪ b)) = ((((a
∪ c) ∩ (b ∪ d))
∪ d) ∩ ((a ∪ c) ∪
b)) |
| 39 | 38 | cm 61 |
. . . . . . . 8
((((a ∪ c) ∩ (b
∪ d)) ∪ d) ∩ ((a
∪ c) ∪ b)) = (((((a
∪ c) ∩ (b ∪ d))
∪ d) ∩ ((a ∪ c) ∪
d)) ∩ ((a ∪ c) ∪
b)) |
| 40 | | anass 76 |
. . . . . . . 8
(((((a ∪ c) ∩ (b
∪ d)) ∪ d) ∩ ((a
∪ c) ∪ d)) ∩ ((a
∪ c) ∪ b)) = ((((a
∪ c) ∩ (b ∪ d))
∪ d) ∩ (((a ∪ c) ∪
d) ∩ ((a ∪ c) ∪
b))) |
| 41 | 39, 40 | tr 62 |
. . . . . . 7
((((a ∪ c) ∩ (b
∪ d)) ∪ d) ∩ ((a
∪ c) ∪ b)) = ((((a
∪ c) ∩ (b ∪ d))
∪ d) ∩ (((a ∪ c) ∪
d) ∩ ((a ∪ c) ∪
b))) |
| 42 | 41 | lan 77 |
. . . . . 6
(b ∩ ((((a ∪ c) ∩
(b ∪ d)) ∪ d)
∩ ((a ∪ c) ∪ b))) =
(b ∩ ((((a ∪ c) ∩
(b ∪ d)) ∪ d)
∩ (((a ∪ c) ∪ d)
∩ ((a ∪ c) ∪ b)))) |
| 43 | 42 | lor 70 |
. . . . 5
(a ∪ (b ∩ ((((a
∪ c) ∩ (b ∪ d))
∪ d) ∩ ((a ∪ c) ∪
b)))) = (a ∪ (b ∩
((((a ∪ c) ∩ (b
∪ d)) ∪ d) ∩ (((a
∪ c) ∪ d) ∩ ((a
∪ c) ∪ b))))) |
| 44 | 34, 43 | tr 62 |
. . . 4
((a ∪ b) ∩ (a
∪ (c ∪ d))) = (a ∪
(b ∩ ((((a ∪ c) ∩
(b ∪ d)) ∪ d)
∩ (((a ∪ c) ∪ d)
∩ ((a ∪ c) ∪ b))))) |
| 45 | | l42modlem1 1149 |
. . . . . . 7
(((a ∪ c) ∪ d)
∩ ((a ∪ c) ∪ b)) =
((a ∪ c) ∪ ((a
∪ d) ∩ (c ∪ b))) |
| 46 | 45 | lan 77 |
. . . . . 6
((((a ∪ c) ∩ (b
∪ d)) ∪ d) ∩ (((a
∪ c) ∪ d) ∩ ((a
∪ c) ∪ b))) = ((((a
∪ c) ∩ (b ∪ d))
∪ d) ∩ ((a ∪ c) ∪
((a ∪ d) ∩ (c
∪ b)))) |
| 47 | 46 | lan 77 |
. . . . 5
(b ∩ ((((a ∪ c) ∩
(b ∪ d)) ∪ d)
∩ (((a ∪ c) ∪ d)
∩ ((a ∪ c) ∪ b)))) =
(b ∩ ((((a ∪ c) ∩
(b ∪ d)) ∪ d)
∩ ((a ∪ c) ∪ ((a
∪ d) ∩ (c ∪ b))))) |
| 48 | 47 | lor 70 |
. . . 4
(a ∪ (b ∩ ((((a
∪ c) ∩ (b ∪ d))
∪ d) ∩ (((a ∪ c) ∪
d) ∩ ((a ∪ c) ∪
b))))) = (a ∪ (b ∩
((((a ∪ c) ∩ (b
∪ d)) ∪ d) ∩ ((a
∪ c) ∪ ((a ∪ d) ∩
(c ∪ b)))))) |
| 49 | 44, 48 | tr 62 |
. . 3
((a ∪ b) ∩ (a
∪ (c ∪ d))) = (a ∪
(b ∩ ((((a ∪ c) ∩
(b ∪ d)) ∪ d)
∩ ((a ∪ c) ∪ ((a
∪ d) ∩ (c ∪ b)))))) |
| 50 | | orcom 73 |
. . . . . . . . 9
(a ∪ d) = (d ∪
a) |
| 51 | | orcom 73 |
. . . . . . . . 9
(c ∪ b) = (b ∪
c) |
| 52 | 50, 51 | 2an 79 |
. . . . . . . 8
((a ∪ d) ∩ (c
∪ b)) = ((d ∪ a) ∩
(b ∪ c)) |
| 53 | | ancom 74 |
. . . . . . . 8
((d ∪ a) ∩ (b
∪ c)) = ((b ∪ c) ∩
(d ∪ a)) |
| 54 | 52, 53 | tr 62 |
. . . . . . 7
((a ∪ d) ∩ (c
∪ b)) = ((b ∪ c) ∩
(d ∪ a)) |
| 55 | 54 | lor 70 |
. . . . . 6
((a ∪ c) ∪ ((a
∪ d) ∩ (c ∪ b))) =
((a ∪ c) ∪ ((b
∪ c) ∩ (d ∪ a))) |
| 56 | 55 | lan 77 |
. . . . 5
((((a ∪ c) ∩ (b
∪ d)) ∪ d) ∩ ((a
∪ c) ∪ ((a ∪ d) ∩
(c ∪ b)))) = ((((a
∪ c) ∩ (b ∪ d))
∪ d) ∩ ((a ∪ c) ∪
((b ∪ c) ∩ (d
∪ a)))) |
| 57 | 56 | lan 77 |
. . . 4
(b ∩ ((((a ∪ c) ∩
(b ∪ d)) ∪ d)
∩ ((a ∪ c) ∪ ((a
∪ d) ∩ (c ∪ b))))) =
(b ∩ ((((a ∪ c) ∩
(b ∪ d)) ∪ d)
∩ ((a ∪ c) ∪ ((b
∪ c) ∩ (d ∪ a))))) |
| 58 | 57 | lor 70 |
. . 3
(a ∪ (b ∩ ((((a
∪ c) ∩ (b ∪ d))
∪ d) ∩ ((a ∪ c) ∪
((a ∪ d) ∩ (c
∪ b)))))) = (a ∪ (b ∩
((((a ∪ c) ∩ (b
∪ d)) ∪ d) ∩ ((a
∪ c) ∪ ((b ∪ c) ∩
(d ∪ a)))))) |
| 59 | 49, 58 | tr 62 |
. 2
((a ∪ b) ∩ (a
∪ (c ∪ d))) = (a ∪
(b ∩ ((((a ∪ c) ∩
(b ∪ d)) ∪ d)
∩ ((a ∪ c) ∪ ((b
∪ c) ∩ (d ∪ a)))))) |
| 60 | | leao1 162 |
. . . . 5
((a ∪ c) ∩ (b
∪ d)) ≤ ((a ∪ c) ∪
((b ∪ c) ∩ (d
∪ a))) |
| 61 | 60 | mlduali 1128 |
. . . 4
((((a ∪ c) ∩ (b
∪ d)) ∪ d) ∩ ((a
∪ c) ∪ ((b ∪ c) ∩
(d ∪ a)))) = (((a
∪ c) ∩ (b ∪ d))
∪ (d ∩ ((a ∪ c) ∪
((b ∪ c) ∩ (d
∪ a))))) |
| 62 | 61 | lan 77 |
. . 3
(b ∩ ((((a ∪ c) ∩
(b ∪ d)) ∪ d)
∩ ((a ∪ c) ∪ ((b
∪ c) ∩ (d ∪ a))))) =
(b ∩ (((a ∪ c) ∩
(b ∪ d)) ∪ (d
∩ ((a ∪ c) ∪ ((b
∪ c) ∩ (d ∪ a)))))) |
| 63 | 62 | lor 70 |
. 2
(a ∪ (b ∩ ((((a
∪ c) ∩ (b ∪ d))
∪ d) ∩ ((a ∪ c) ∪
((b ∪ c) ∩ (d
∪ a)))))) = (a ∪ (b ∩
(((a ∪ c) ∩ (b
∪ d)) ∪ (d ∩ ((a
∪ c) ∪ ((b ∪ c) ∩
(d ∪ a))))))) |
| 64 | 59, 63 | tr 62 |
1
((a ∪ b) ∩ (a
∪ (c ∪ d))) = (a ∪
(b ∩ (((a ∪ c) ∩
(b ∪ d)) ∪ (d
∩ ((a ∪ c) ∪ ((b
∪ c) ∩ (d ∪ a))))))) |