Proof of Theorem testmod2expanded
Step | Hyp | Ref
| Expression |
1 | | orass 75 |
. . . . . . . . . . . . 13
((a ∪ c) ∪ d) =
(a ∪ (c ∪ d)) |
2 | 1 | lan 77 |
. . . . . . . . . . . 12
((a ∪ b) ∩ ((a
∪ c) ∪ d)) = ((a ∪
b) ∩ (a ∪ (c ∪
d))) |
3 | 2 | cm 61 |
. . . . . . . . . . 11
((a ∪ b) ∩ (a
∪ (c ∪ d))) = ((a ∪
b) ∩ ((a ∪ c) ∪
d)) |
4 | | leo 158 |
. . . . . . . . . . . . 13
a ≤ (a ∪ c) |
5 | 4 | ler 149 |
. . . . . . . . . . . 12
a ≤ ((a ∪ c) ∪
d) |
6 | 5 | mlduali 1128 |
. . . . . . . . . . 11
((a ∪ b) ∩ ((a
∪ c) ∪ d)) = (a ∪
(b ∩ ((a ∪ c) ∪
d))) |
7 | 3, 6 | tr 62 |
. . . . . . . . . 10
((a ∪ b) ∩ (a
∪ (c ∪ d))) = (a ∪
(b ∩ ((a ∪ c) ∪
d))) |
8 | | leo 158 |
. . . . . . . . . . . . . . 15
b ≤ (b ∪ d) |
9 | | leor 159 |
. . . . . . . . . . . . . . 15
b ≤ ((a ∪ c) ∪
b) |
10 | 8, 9 | ler2an 173 |
. . . . . . . . . . . . . 14
b ≤ ((b ∪ d) ∩
((a ∪ c) ∪ b)) |
11 | 10 | df2le2 136 |
. . . . . . . . . . . . 13
(b ∩ ((b ∪ d) ∩
((a ∪ c) ∪ b))) =
b |
12 | 11 | ran 78 |
. . . . . . . . . . . 12
((b ∩ ((b ∪ d) ∩
((a ∪ c) ∪ b)))
∩ ((a ∪ c) ∪ d)) =
(b ∩ ((a ∪ c) ∪
d)) |
13 | 12 | cm 61 |
. . . . . . . . . . 11
(b ∩ ((a ∪ c) ∪
d)) = ((b ∩ ((b
∪ d) ∩ ((a ∪ c) ∪
b))) ∩ ((a ∪ c) ∪
d)) |
14 | 13 | lor 70 |
. . . . . . . . . 10
(a ∪ (b ∩ ((a
∪ c) ∪ d))) = (a ∪
((b ∩ ((b ∪ d) ∩
((a ∪ c) ∪ b)))
∩ ((a ∪ c) ∪ d))) |
15 | 7, 14 | tr 62 |
. . . . . . . . 9
((a ∪ b) ∩ (a
∪ (c ∪ d))) = (a ∪
((b ∩ ((b ∪ d) ∩
((a ∪ c) ∪ b)))
∩ ((a ∪ c) ∪ d))) |
16 | | anass 76 |
. . . . . . . . . 10
((b ∩ ((b ∪ d) ∩
((a ∪ c) ∪ b)))
∩ ((a ∪ c) ∪ d)) =
(b ∩ (((b ∪ d) ∩
((a ∪ c) ∪ b))
∩ ((a ∪ c) ∪ d))) |
17 | 16 | lor 70 |
. . . . . . . . 9
(a ∪ ((b ∩ ((b
∪ d) ∩ ((a ∪ c) ∪
b))) ∩ ((a ∪ c) ∪
d))) = (a ∪ (b ∩
(((b ∪ d) ∩ ((a
∪ c) ∪ b)) ∩ ((a
∪ c) ∪ d)))) |
18 | 15, 17 | tr 62 |
. . . . . . . 8
((a ∪ b) ∩ (a
∪ (c ∪ d))) = (a ∪
(b ∩ (((b ∪ d) ∩
((a ∪ c) ∪ b))
∩ ((a ∪ c) ∪ d)))) |
19 | | an32 83 |
. . . . . . . . . 10
(((b ∪ d) ∩ ((a
∪ c) ∪ b)) ∩ ((a
∪ c) ∪ d)) = (((b ∪
d) ∩ ((a ∪ c) ∪
d)) ∩ ((a ∪ c) ∪
b)) |
20 | 19 | lan 77 |
. . . . . . . . 9
(b ∩ (((b ∪ d) ∩
((a ∪ c) ∪ b))
∩ ((a ∪ c) ∪ d))) =
(b ∩ (((b ∪ d) ∩
((a ∪ c) ∪ d))
∩ ((a ∪ c) ∪ b))) |
21 | 20 | lor 70 |
. . . . . . . 8
(a ∪ (b ∩ (((b
∪ d) ∩ ((a ∪ c) ∪
b)) ∩ ((a ∪ c) ∪
d)))) = (a ∪ (b ∩
(((b ∪ d) ∩ ((a
∪ c) ∪ d)) ∩ ((a
∪ c) ∪ b)))) |
22 | 18, 21 | tr 62 |
. . . . . . 7
((a ∪ b) ∩ (a
∪ (c ∪ d))) = (a ∪
(b ∩ (((b ∪ d) ∩
((a ∪ c) ∪ d))
∩ ((a ∪ c) ∪ b)))) |
23 | | leor 159 |
. . . . . . . . . . 11
d ≤ (b ∪ d) |
24 | 23 | mldual2i 1127 |
. . . . . . . . . 10
((b ∪ d) ∩ ((a
∪ c) ∪ d)) = (((b ∪
d) ∩ (a ∪ c))
∪ d) |
25 | 24 | ran 78 |
. . . . . . . . 9
(((b ∪ d) ∩ ((a
∪ c) ∪ d)) ∩ ((a
∪ c) ∪ b)) = ((((b
∪ d) ∩ (a ∪ c))
∪ d) ∩ ((a ∪ c) ∪
b)) |
26 | 25 | lan 77 |
. . . . . . . 8
(b ∩ (((b ∪ d) ∩
((a ∪ c) ∪ d))
∩ ((a ∪ c) ∪ b))) =
(b ∩ ((((b ∪ d) ∩
(a ∪ c)) ∪ d)
∩ ((a ∪ c) ∪ b))) |
27 | 26 | lor 70 |
. . . . . . 7
(a ∪ (b ∩ (((b
∪ d) ∩ ((a ∪ c) ∪
d)) ∩ ((a ∪ c) ∪
b)))) = (a ∪ (b ∩
((((b ∪ d) ∩ (a
∪ c)) ∪ d) ∩ ((a
∪ c) ∪ b)))) |
28 | 22, 27 | tr 62 |
. . . . . 6
((a ∪ b) ∩ (a
∪ (c ∪ d))) = (a ∪
(b ∩ ((((b ∪ d) ∩
(a ∪ c)) ∪ d)
∩ ((a ∪ c) ∪ b)))) |
29 | | ancom 74 |
. . . . . . . . . 10
((b ∪ d) ∩ (a
∪ c)) = ((a ∪ c) ∩
(b ∪ d)) |
30 | 29 | ror 71 |
. . . . . . . . 9
(((b ∪ d) ∩ (a
∪ c)) ∪ d) = (((a ∪
c) ∩ (b ∪ d))
∪ d) |
31 | 30 | ran 78 |
. . . . . . . 8
((((b ∪ d) ∩ (a
∪ c)) ∪ d) ∩ ((a
∪ c) ∪ b)) = ((((a
∪ c) ∩ (b ∪ d))
∪ d) ∩ ((a ∪ c) ∪
b)) |
32 | 31 | lan 77 |
. . . . . . 7
(b ∩ ((((b ∪ d) ∩
(a ∪ c)) ∪ d)
∩ ((a ∪ c) ∪ b))) =
(b ∩ ((((a ∪ c) ∩
(b ∪ d)) ∪ d)
∩ ((a ∪ c) ∪ b))) |
33 | 32 | lor 70 |
. . . . . 6
(a ∪ (b ∩ ((((b
∪ d) ∩ (a ∪ c))
∪ d) ∩ ((a ∪ c) ∪
b)))) = (a ∪ (b ∩
((((a ∪ c) ∩ (b
∪ d)) ∪ d) ∩ ((a
∪ c) ∪ b)))) |
34 | 28, 33 | tr 62 |
. . . . 5
((a ∪ b) ∩ (a
∪ (c ∪ d))) = (a ∪
(b ∩ ((((a ∪ c) ∩
(b ∪ d)) ∪ d)
∩ ((a ∪ c) ∪ b)))) |
35 | | lea 160 |
. . . . . . . . . . . 12
((a ∪ c) ∩ (b
∪ d)) ≤ (a ∪ c) |
36 | 35 | leror 152 |
. . . . . . . . . . 11
(((a ∪ c) ∩ (b
∪ d)) ∪ d) ≤ ((a
∪ c) ∪ d) |
37 | 36 | df2le2 136 |
. . . . . . . . . 10
((((a ∪ c) ∩ (b
∪ d)) ∪ d) ∩ ((a
∪ c) ∪ d)) = (((a ∪
c) ∩ (b ∪ d))
∪ d) |
38 | 37 | ran 78 |
. . . . . . . . 9
(((((a ∪ c) ∩ (b
∪ d)) ∪ d) ∩ ((a
∪ c) ∪ d)) ∩ ((a
∪ c) ∪ b)) = ((((a
∪ c) ∩ (b ∪ d))
∪ d) ∩ ((a ∪ c) ∪
b)) |
39 | 38 | cm 61 |
. . . . . . . 8
((((a ∪ c) ∩ (b
∪ d)) ∪ d) ∩ ((a
∪ c) ∪ b)) = (((((a
∪ c) ∩ (b ∪ d))
∪ d) ∩ ((a ∪ c) ∪
d)) ∩ ((a ∪ c) ∪
b)) |
40 | | anass 76 |
. . . . . . . 8
(((((a ∪ c) ∩ (b
∪ d)) ∪ d) ∩ ((a
∪ c) ∪ d)) ∩ ((a
∪ c) ∪ b)) = ((((a
∪ c) ∩ (b ∪ d))
∪ d) ∩ (((a ∪ c) ∪
d) ∩ ((a ∪ c) ∪
b))) |
41 | 39, 40 | tr 62 |
. . . . . . 7
((((a ∪ c) ∩ (b
∪ d)) ∪ d) ∩ ((a
∪ c) ∪ b)) = ((((a
∪ c) ∩ (b ∪ d))
∪ d) ∩ (((a ∪ c) ∪
d) ∩ ((a ∪ c) ∪
b))) |
42 | 41 | lan 77 |
. . . . . 6
(b ∩ ((((a ∪ c) ∩
(b ∪ d)) ∪ d)
∩ ((a ∪ c) ∪ b))) =
(b ∩ ((((a ∪ c) ∩
(b ∪ d)) ∪ d)
∩ (((a ∪ c) ∪ d)
∩ ((a ∪ c) ∪ b)))) |
43 | 42 | lor 70 |
. . . . 5
(a ∪ (b ∩ ((((a
∪ c) ∩ (b ∪ d))
∪ d) ∩ ((a ∪ c) ∪
b)))) = (a ∪ (b ∩
((((a ∪ c) ∩ (b
∪ d)) ∪ d) ∩ (((a
∪ c) ∪ d) ∩ ((a
∪ c) ∪ b))))) |
44 | 34, 43 | tr 62 |
. . . 4
((a ∪ b) ∩ (a
∪ (c ∪ d))) = (a ∪
(b ∩ ((((a ∪ c) ∩
(b ∪ d)) ∪ d)
∩ (((a ∪ c) ∪ d)
∩ ((a ∪ c) ∪ b))))) |
45 | | l42modlem1 1149 |
. . . . . . 7
(((a ∪ c) ∪ d)
∩ ((a ∪ c) ∪ b)) =
((a ∪ c) ∪ ((a
∪ d) ∩ (c ∪ b))) |
46 | 45 | lan 77 |
. . . . . 6
((((a ∪ c) ∩ (b
∪ d)) ∪ d) ∩ (((a
∪ c) ∪ d) ∩ ((a
∪ c) ∪ b))) = ((((a
∪ c) ∩ (b ∪ d))
∪ d) ∩ ((a ∪ c) ∪
((a ∪ d) ∩ (c
∪ b)))) |
47 | 46 | lan 77 |
. . . . 5
(b ∩ ((((a ∪ c) ∩
(b ∪ d)) ∪ d)
∩ (((a ∪ c) ∪ d)
∩ ((a ∪ c) ∪ b)))) =
(b ∩ ((((a ∪ c) ∩
(b ∪ d)) ∪ d)
∩ ((a ∪ c) ∪ ((a
∪ d) ∩ (c ∪ b))))) |
48 | 47 | lor 70 |
. . . 4
(a ∪ (b ∩ ((((a
∪ c) ∩ (b ∪ d))
∪ d) ∩ (((a ∪ c) ∪
d) ∩ ((a ∪ c) ∪
b))))) = (a ∪ (b ∩
((((a ∪ c) ∩ (b
∪ d)) ∪ d) ∩ ((a
∪ c) ∪ ((a ∪ d) ∩
(c ∪ b)))))) |
49 | 44, 48 | tr 62 |
. . 3
((a ∪ b) ∩ (a
∪ (c ∪ d))) = (a ∪
(b ∩ ((((a ∪ c) ∩
(b ∪ d)) ∪ d)
∩ ((a ∪ c) ∪ ((a
∪ d) ∩ (c ∪ b)))))) |
50 | | orcom 73 |
. . . . . . . . 9
(a ∪ d) = (d ∪
a) |
51 | | orcom 73 |
. . . . . . . . 9
(c ∪ b) = (b ∪
c) |
52 | 50, 51 | 2an 79 |
. . . . . . . 8
((a ∪ d) ∩ (c
∪ b)) = ((d ∪ a) ∩
(b ∪ c)) |
53 | | ancom 74 |
. . . . . . . 8
((d ∪ a) ∩ (b
∪ c)) = ((b ∪ c) ∩
(d ∪ a)) |
54 | 52, 53 | tr 62 |
. . . . . . 7
((a ∪ d) ∩ (c
∪ b)) = ((b ∪ c) ∩
(d ∪ a)) |
55 | 54 | lor 70 |
. . . . . 6
((a ∪ c) ∪ ((a
∪ d) ∩ (c ∪ b))) =
((a ∪ c) ∪ ((b
∪ c) ∩ (d ∪ a))) |
56 | 55 | lan 77 |
. . . . 5
((((a ∪ c) ∩ (b
∪ d)) ∪ d) ∩ ((a
∪ c) ∪ ((a ∪ d) ∩
(c ∪ b)))) = ((((a
∪ c) ∩ (b ∪ d))
∪ d) ∩ ((a ∪ c) ∪
((b ∪ c) ∩ (d
∪ a)))) |
57 | 56 | lan 77 |
. . . 4
(b ∩ ((((a ∪ c) ∩
(b ∪ d)) ∪ d)
∩ ((a ∪ c) ∪ ((a
∪ d) ∩ (c ∪ b))))) =
(b ∩ ((((a ∪ c) ∩
(b ∪ d)) ∪ d)
∩ ((a ∪ c) ∪ ((b
∪ c) ∩ (d ∪ a))))) |
58 | 57 | lor 70 |
. . 3
(a ∪ (b ∩ ((((a
∪ c) ∩ (b ∪ d))
∪ d) ∩ ((a ∪ c) ∪
((a ∪ d) ∩ (c
∪ b)))))) = (a ∪ (b ∩
((((a ∪ c) ∩ (b
∪ d)) ∪ d) ∩ ((a
∪ c) ∪ ((b ∪ c) ∩
(d ∪ a)))))) |
59 | 49, 58 | tr 62 |
. 2
((a ∪ b) ∩ (a
∪ (c ∪ d))) = (a ∪
(b ∩ ((((a ∪ c) ∩
(b ∪ d)) ∪ d)
∩ ((a ∪ c) ∪ ((b
∪ c) ∩ (d ∪ a)))))) |
60 | | leao1 162 |
. . . . 5
((a ∪ c) ∩ (b
∪ d)) ≤ ((a ∪ c) ∪
((b ∪ c) ∩ (d
∪ a))) |
61 | 60 | mlduali 1128 |
. . . 4
((((a ∪ c) ∩ (b
∪ d)) ∪ d) ∩ ((a
∪ c) ∪ ((b ∪ c) ∩
(d ∪ a)))) = (((a
∪ c) ∩ (b ∪ d))
∪ (d ∩ ((a ∪ c) ∪
((b ∪ c) ∩ (d
∪ a))))) |
62 | 61 | lan 77 |
. . 3
(b ∩ ((((a ∪ c) ∩
(b ∪ d)) ∪ d)
∩ ((a ∪ c) ∪ ((b
∪ c) ∩ (d ∪ a))))) =
(b ∩ (((a ∪ c) ∩
(b ∪ d)) ∪ (d
∩ ((a ∪ c) ∪ ((b
∪ c) ∩ (d ∪ a)))))) |
63 | 62 | lor 70 |
. 2
(a ∪ (b ∩ ((((a
∪ c) ∩ (b ∪ d))
∪ d) ∩ ((a ∪ c) ∪
((b ∪ c) ∩ (d
∪ a)))))) = (a ∪ (b ∩
(((a ∪ c) ∩ (b
∪ d)) ∪ (d ∩ ((a
∪ c) ∪ ((b ∪ c) ∩
(d ∪ a))))))) |
64 | 59, 63 | tr 62 |
1
((a ∪ b) ∩ (a
∪ (c ∪ d))) = (a ∪
(b ∩ (((a ∪ c) ∩
(b ∪ d)) ∪ (d
∩ ((a ∪ c) ∪ ((b
∪ c) ∩ (d ∪ a))))))) |