| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > mli | GIF version | ||
| Description: Inference version of modular law. (Contributed by NM, 1-Apr-2012.) |
| Ref | Expression |
|---|---|
| mli.1 | c ≤ a |
| Ref | Expression |
|---|---|
| mli | ((a ∩ b) ∪ c) = (a ∩ (b ∪ c)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 74 | . . . 4 (a ∩ b) = (b ∩ a) | |
| 2 | 1 | ror 71 | . . 3 ((a ∩ b) ∪ c) = ((b ∩ a) ∪ c) |
| 3 | orcom 73 | . . 3 ((b ∩ a) ∪ c) = (c ∪ (b ∩ a)) | |
| 4 | mli.1 | . . . 4 c ≤ a | |
| 5 | 4 | ml2i 1125 | . . 3 (c ∪ (b ∩ a)) = ((c ∪ b) ∩ a) |
| 6 | 2, 3, 5 | 3tr 65 | . 2 ((a ∩ b) ∪ c) = ((c ∪ b) ∩ a) |
| 7 | orcom 73 | . . 3 (c ∪ b) = (b ∪ c) | |
| 8 | 7 | ran 78 | . 2 ((c ∪ b) ∩ a) = ((b ∪ c) ∩ a) |
| 9 | ancom 74 | . 2 ((b ∪ c) ∩ a) = (a ∩ (b ∪ c)) | |
| 10 | 6, 8, 9 | 3tr 65 | 1 ((a ∩ b) ∪ c) = (a ∩ (b ∪ c)) |
| Colors of variables: term |
| Syntax hints: = wb 1 ≤ wle 2 ∪ wo 6 ∩ wa 7 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-ml 1122 |
| This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 |
| This theorem is referenced by: dp41lemf 1188 xdp41 1198 xxdp41 1201 xdp45lem 1204 xdp43lem 1205 xdp45 1206 xdp43 1207 3dp43 1208 testmod 1213 testmod3 1217 |
| Copyright terms: Public domain | W3C validator |