QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  mli GIF version

Theorem mli 1126
Description: Inference version of modular law. (Contributed by NM, 1-Apr-2012.)
Hypothesis
Ref Expression
mli.1 ca
Assertion
Ref Expression
mli ((ab) ∪ c) = (a ∩ (bc))

Proof of Theorem mli
StepHypRef Expression
1 ancom 74 . . . 4 (ab) = (ba)
21ror 71 . . 3 ((ab) ∪ c) = ((ba) ∪ c)
3 orcom 73 . . 3 ((ba) ∪ c) = (c ∪ (ba))
4 mli.1 . . . 4 ca
54ml2i 1125 . . 3 (c ∪ (ba)) = ((cb) ∩ a)
62, 3, 53tr 65 . 2 ((ab) ∪ c) = ((cb) ∩ a)
7 orcom 73 . . 3 (cb) = (bc)
87ran 78 . 2 ((cb) ∩ a) = ((bc) ∩ a)
9 ancom 74 . 2 ((bc) ∩ a) = (a ∩ (bc))
106, 8, 93tr 65 1 ((ab) ∪ c) = (a ∩ (bc))
Colors of variables: term
Syntax hints:   = wb 1  wle 2  wo 6  wa 7
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a3 32  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38  ax-ml 1122
This theorem depends on definitions:  df-a 40  df-t 41  df-f 42  df-le1 130  df-le2 131
This theorem is referenced by:  dp41lemf  1188  xdp41  1198  xxdp41  1201  xdp45lem  1204  xdp43lem  1205  xdp45  1206  xdp43  1207  3dp43  1208  testmod  1213  testmod3  1217
  Copyright terms: Public domain W3C validator