Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > u1lemonb | GIF version |
Description: Lemma for Sasaki implication study. (Contributed by NM, 15-Dec-1997.) |
Ref | Expression |
---|---|
u1lemonb | ((a →1 b) ∪ b⊥ ) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-i1 44 | . . 3 (a →1 b) = (a⊥ ∪ (a ∩ b)) | |
2 | 1 | ax-r5 38 | . 2 ((a →1 b) ∪ b⊥ ) = ((a⊥ ∪ (a ∩ b)) ∪ b⊥ ) |
3 | or32 82 | . . 3 ((a⊥ ∪ (a ∩ b)) ∪ b⊥ ) = ((a⊥ ∪ b⊥ ) ∪ (a ∩ b)) | |
4 | df-a 40 | . . . . 5 (a ∩ b) = (a⊥ ∪ b⊥ )⊥ | |
5 | 4 | lor 70 | . . . 4 ((a⊥ ∪ b⊥ ) ∪ (a ∩ b)) = ((a⊥ ∪ b⊥ ) ∪ (a⊥ ∪ b⊥ )⊥ ) |
6 | df-t 41 | . . . . 5 1 = ((a⊥ ∪ b⊥ ) ∪ (a⊥ ∪ b⊥ )⊥ ) | |
7 | 6 | ax-r1 35 | . . . 4 ((a⊥ ∪ b⊥ ) ∪ (a⊥ ∪ b⊥ )⊥ ) = 1 |
8 | 5, 7 | ax-r2 36 | . . 3 ((a⊥ ∪ b⊥ ) ∪ (a ∩ b)) = 1 |
9 | 3, 8 | ax-r2 36 | . 2 ((a⊥ ∪ (a ∩ b)) ∪ b⊥ ) = 1 |
10 | 2, 9 | ax-r2 36 | 1 ((a →1 b) ∪ b⊥ ) = 1 |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 1wt 8 →1 wi1 12 |
This theorem was proved from axioms: ax-a2 31 ax-a3 32 ax-r1 35 ax-r2 36 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-i1 44 |
This theorem is referenced by: u1lemnab 650 u3lem14a 791 |
Copyright terms: Public domain | W3C validator |