Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > or32 | GIF version |
Description: Swap disjuncts. (Contributed by NM, 27-Aug-1997.) |
Ref | Expression |
---|---|
or32 | ((a ∪ b) ∪ c) = ((a ∪ c) ∪ b) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-a2 31 | . . 3 (b ∪ c) = (c ∪ b) | |
2 | 1 | lor 70 | . 2 (a ∪ (b ∪ c)) = (a ∪ (c ∪ b)) |
3 | ax-a3 32 | . 2 ((a ∪ b) ∪ c) = (a ∪ (b ∪ c)) | |
4 | ax-a3 32 | . 2 ((a ∪ c) ∪ b) = (a ∪ (c ∪ b)) | |
5 | 2, 3, 4 | 3tr1 63 | 1 ((a ∪ b) ∪ c) = ((a ∪ c) ∪ b) |
Colors of variables: term |
Syntax hints: = wb 1 ∪ wo 6 |
This theorem was proved from axioms: ax-a2 31 ax-a3 32 ax-r1 35 ax-r2 36 ax-r5 38 |
This theorem is referenced by: womle2a 295 ska2 432 i3bi 496 dfi4b 500 lem4 511 ud4lem1c 579 ud4lem1 581 ud4lem2 582 ud5lem1 589 u4lemoa 623 u1lemona 625 u3lemona 627 u4lemona 628 u1lemob 630 u2lemob 631 u3lemob 632 u4lemob 633 u1lemonb 635 u2lemonb 636 u3lemonb 637 u4lem4 759 u4lem5 764 u4lem6 768 u5lem6 769 u12lem 771 u1lem11 780 3vth9 812 2oalem1 825 sadm3 838 marsdenlem2 881 e2ast2 894 e2astlem1 895 oa4to6lem2 961 oa3-6lem 980 oa3-u2 992 4oath1 1041 4oagen1 1042 4oadist 1044 vneulem6 1136 vneulem10 1140 vneulem11 1141 vneulemexp 1148 dp15lema 1154 dp53lemc 1165 dp35lemc 1175 dp41lemc0 1184 dp41lemg 1189 xdp41 1198 xdp15 1199 xdp53 1200 xxdp41 1201 xxdp15 1202 xxdp53 1203 xdp45lem 1204 xdp43lem 1205 xdp45 1206 xdp43 1207 3dp43 1208 oadp35lemc 1211 testmod 1213 |
Copyright terms: Public domain | W3C validator |