Proof of Theorem u3lem14a
Step | Hyp | Ref
| Expression |
1 | | u3lem13b 790 |
. . 3
((b →3 a⊥ ) →3 b⊥ ) = (b →1 a) |
2 | 1 | ud3lem0a 260 |
. 2
(a →3 ((b →3 a⊥ ) →3 b⊥ )) = (a →3 (b →1 a)) |
3 | | df-i3 46 |
. . 3
(a →3 (b →1 a)) = (((a⊥ ∩ (b →1 a)) ∪ (a⊥ ∩ (b →1 a)⊥ )) ∪ (a ∩ (a⊥ ∪ (b →1 a)))) |
4 | | ancom 74 |
. . . . . . . 8
(a⊥ ∩ (b →1 a)) = ((b
→1 a) ∩ a⊥ ) |
5 | | u1lemanb 615 |
. . . . . . . 8
((b →1 a) ∩ a⊥ ) = (b⊥ ∩ a⊥ ) |
6 | 4, 5 | ax-r2 36 |
. . . . . . 7
(a⊥ ∩ (b →1 a)) = (b⊥ ∩ a⊥ ) |
7 | | ancom 74 |
. . . . . . . 8
(a⊥ ∩ (b →1 a)⊥ ) = ((b →1 a)⊥ ∩ a⊥ ) |
8 | | u1lemnanb 655 |
. . . . . . . 8
((b →1 a)⊥ ∩ a⊥ ) = (b ∩ a⊥ ) |
9 | 7, 8 | ax-r2 36 |
. . . . . . 7
(a⊥ ∩ (b →1 a)⊥ ) = (b ∩ a⊥ ) |
10 | 6, 9 | 2or 72 |
. . . . . 6
((a⊥ ∩
(b →1 a)) ∪ (a⊥ ∩ (b →1 a)⊥ )) = ((b⊥ ∩ a⊥ ) ∪ (b ∩ a⊥ )) |
11 | | ax-a2 31 |
. . . . . . 7
((b⊥ ∩ a⊥ ) ∪ (b ∩ a⊥ )) = ((b ∩ a⊥ ) ∪ (b⊥ ∩ a⊥ )) |
12 | | ancom 74 |
. . . . . . . 8
(b ∩ a⊥ ) = (a⊥ ∩ b) |
13 | | ancom 74 |
. . . . . . . 8
(b⊥ ∩ a⊥ ) = (a⊥ ∩ b⊥ ) |
14 | 12, 13 | 2or 72 |
. . . . . . 7
((b ∩ a⊥ ) ∪ (b⊥ ∩ a⊥ )) = ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
15 | 11, 14 | ax-r2 36 |
. . . . . 6
((b⊥ ∩ a⊥ ) ∪ (b ∩ a⊥ )) = ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
16 | 10, 15 | ax-r2 36 |
. . . . 5
((a⊥ ∩
(b →1 a)) ∪ (a⊥ ∩ (b →1 a)⊥ )) = ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) |
17 | | ax-a2 31 |
. . . . . . . 8
(a⊥ ∪ (b →1 a)) = ((b
→1 a) ∪ a⊥ ) |
18 | | u1lemonb 635 |
. . . . . . . 8
((b →1 a) ∪ a⊥ ) = 1 |
19 | 17, 18 | ax-r2 36 |
. . . . . . 7
(a⊥ ∪ (b →1 a)) = 1 |
20 | 19 | lan 77 |
. . . . . 6
(a ∩ (a⊥ ∪ (b →1 a))) = (a ∩
1) |
21 | | an1 106 |
. . . . . 6
(a ∩ 1) = a |
22 | 20, 21 | ax-r2 36 |
. . . . 5
(a ∩ (a⊥ ∪ (b →1 a))) = a |
23 | 16, 22 | 2or 72 |
. . . 4
(((a⊥ ∩
(b →1 a)) ∪ (a⊥ ∩ (b →1 a)⊥ )) ∪ (a ∩ (a⊥ ∪ (b →1 a)))) = (((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ )) ∪ a) |
24 | | ax-a2 31 |
. . . . 5
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ a) = (a ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
25 | | u3lem3 751 |
. . . . . . 7
(a →3 (b →3 a)) = (a ∪
((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) |
26 | 25 | ax-r1 35 |
. . . . . 6
(a ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) = (a →3 (b →3 a)) |
27 | | id 59 |
. . . . . 6
(a →3 (b →3 a)) = (a
→3 (b →3
a)) |
28 | 26, 27 | ax-r2 36 |
. . . . 5
(a ∪ ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥ ))) = (a →3 (b →3 a)) |
29 | 24, 28 | ax-r2 36 |
. . . 4
(((a⊥ ∩
b) ∪ (a⊥ ∩ b⊥ )) ∪ a) = (a
→3 (b →3
a)) |
30 | 23, 29 | ax-r2 36 |
. . 3
(((a⊥ ∩
(b →1 a)) ∪ (a⊥ ∩ (b →1 a)⊥ )) ∪ (a ∩ (a⊥ ∪ (b →1 a)))) = (a
→3 (b →3
a)) |
31 | 3, 30 | ax-r2 36 |
. 2
(a →3 (b →1 a)) = (a
→3 (b →3
a)) |
32 | 2, 31 | ax-r2 36 |
1
(a →3 ((b →3 a⊥ ) →3 b⊥ )) = (a →3 (b →3 a)) |