| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > u2lemc5 | GIF version | ||
| Description: Commutation theorem for Dishkant implication. (Contributed by NM, 11-Jan-1998.) |
| Ref | Expression |
|---|---|
| ulemc3.1 | a C b |
| Ref | Expression |
|---|---|
| u2lemc5 | a C (a →2 b) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | comid 187 | . 2 a C a | |
| 2 | ulemc3.1 | . 2 a C b | |
| 3 | 1, 2 | u2lemc2 687 | 1 a C (a →2 b) |
| Colors of variables: term |
| Syntax hints: C wc 3 →2 wi2 13 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
| This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i2 45 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |