Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > comid | GIF version |
Description: Identity law for commutation. Does not use OML. (Contributed by NM, 9-Nov-1997.) |
Ref | Expression |
---|---|
comid | a C a |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | comorr 184 | . 2 a C (a ∪ a) | |
2 | oridm 110 | . 2 (a ∪ a) = a | |
3 | 1, 2 | cbtr 182 | 1 a C a |
Colors of variables: term |
Syntax hints: C wc 3 ∪ wo 6 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-t 41 df-f 42 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: comi32 510 i3abs3 524 ud1lem2 561 ud1lem3 562 ud2lem3 565 ud4lem2 582 ud4lem3 585 u1lemaa 600 u3lemaa 602 u3lemana 607 u2lemanb 616 u4lemanb 618 u4lemob 633 u1lemc1 680 u2lemc1 681 u4lemc1 683 u1lemc3 691 u2lemc5 697 u4lemc5 699 u1lemc4 701 u3lemc4 703 u4lemc4 704 u5lemc4 705 u3lem2 746 u1lem4 757 u4lem4 759 u3lem13a 789 bi1o1a 798 3vded21 817 3vded3 819 1oa 820 mhlem1 877 marsdenlem2 881 gomaex3lem1 914 gomaex3lem2 915 gomaex3lem3 916 oa3to4lem1 945 oa3to4lem2 946 oa4to6lem1 960 oa4to6lem2 961 oa4to6lem3 962 com3iia 1102 lem4.6.7 1103 |
Copyright terms: Public domain | W3C validator |