Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > u2lemc2 | GIF version |
Description: Commutation theorem for Dishkant implication. (Contributed by NM, 14-Dec-1997.) |
Ref | Expression |
---|---|
ulemc2.1 | a C b |
ulemc2.2 | a C c |
Ref | Expression |
---|---|
u2lemc2 | a C (b →2 c) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ulemc2.2 | . . 3 a C c | |
2 | ulemc2.1 | . . . . 5 a C b | |
3 | 2 | comcom2 183 | . . . 4 a C b⊥ |
4 | 1 | comcom2 183 | . . . 4 a C c⊥ |
5 | 3, 4 | com2an 484 | . . 3 a C (b⊥ ∩ c⊥ ) |
6 | 1, 5 | com2or 483 | . 2 a C (c ∪ (b⊥ ∩ c⊥ )) |
7 | df-i2 45 | . . 3 (b →2 c) = (c ∪ (b⊥ ∩ c⊥ )) | |
8 | 7 | ax-r1 35 | . 2 (c ∪ (b⊥ ∩ c⊥ )) = (b →2 c) |
9 | 6, 8 | cbtr 182 | 1 a C (b →2 c) |
Colors of variables: term |
Syntax hints: C wc 3 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →2 wi2 13 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a4 33 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 ax-r3 439 |
This theorem depends on definitions: df-b 39 df-a 40 df-t 41 df-f 42 df-i2 45 df-le1 130 df-le2 131 df-c1 132 df-c2 133 |
This theorem is referenced by: u2lemc5 697 |
Copyright terms: Public domain | W3C validator |