QLE Home Quantum Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  QLE Home  >  Th. List  >  u2lemnonb GIF version

Theorem u2lemnonb 676
Description: Lemma for Dishkant implication study. (Contributed by NM, 16-Dec-1997.)
Assertion
Ref Expression
u2lemnonb ((a2 b)b ) = b

Proof of Theorem u2lemnonb
StepHypRef Expression
1 df-a 40 . . . 4 ((a2 b) ∩ b) = ((a2 b)b )
21ax-r1 35 . . 3 ((a2 b)b ) = ((a2 b) ∩ b)
3 u2lemab 611 . . 3 ((a2 b) ∩ b) = b
42, 3ax-r2 36 . 2 ((a2 b)b ) = b
54con3 68 1 ((a2 b)b ) = b
Colors of variables: term
Syntax hints:   = wb 1   wn 4  wo 6  wa 7  2 wi2 13
This theorem was proved from axioms:  ax-a1 30  ax-a2 31  ax-a5 34  ax-r1 35  ax-r2 36  ax-r4 37  ax-r5 38
This theorem depends on definitions:  df-a 40  df-i2 45
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator