| Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > QLE Home > Th. List > u2lemnonb | GIF version | ||
| Description: Lemma for Dishkant implication study. (Contributed by NM, 16-Dec-1997.) |
| Ref | Expression |
|---|---|
| u2lemnonb | ((a →2 b)⊥ ∪ b⊥ ) = b⊥ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-a 40 | . . . 4 ((a →2 b) ∩ b) = ((a →2 b)⊥ ∪ b⊥ )⊥ | |
| 2 | 1 | ax-r1 35 | . . 3 ((a →2 b)⊥ ∪ b⊥ )⊥ = ((a →2 b) ∩ b) |
| 3 | u2lemab 611 | . . 3 ((a →2 b) ∩ b) = b | |
| 4 | 2, 3 | ax-r2 36 | . 2 ((a →2 b)⊥ ∪ b⊥ )⊥ = b |
| 5 | 4 | con3 68 | 1 ((a →2 b)⊥ ∪ b⊥ ) = b⊥ |
| Colors of variables: term |
| Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →2 wi2 13 |
| This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
| This theorem depends on definitions: df-a 40 df-i2 45 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |