Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > u2lemab | GIF version |
Description: Lemma for Dishkant implication study. (Contributed by NM, 14-Dec-1997.) |
Ref | Expression |
---|---|
u2lemab | ((a →2 b) ∩ b) = b |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-i2 45 | . . 3 (a →2 b) = (b ∪ (a⊥ ∩ b⊥ )) | |
2 | 1 | ran 78 | . 2 ((a →2 b) ∩ b) = ((b ∪ (a⊥ ∩ b⊥ )) ∩ b) |
3 | ancom 74 | . . 3 ((b ∪ (a⊥ ∩ b⊥ )) ∩ b) = (b ∩ (b ∪ (a⊥ ∩ b⊥ ))) | |
4 | anabs 121 | . . 3 (b ∩ (b ∪ (a⊥ ∩ b⊥ ))) = b | |
5 | 3, 4 | ax-r2 36 | . 2 ((b ∪ (a⊥ ∩ b⊥ )) ∩ b) = b |
6 | 2, 5 | ax-r2 36 | 1 ((a →2 b) ∩ b) = b |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →2 wi2 13 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-i2 45 |
This theorem is referenced by: u2lemnonb 676 u21lembi 727 bi3 839 bi4 840 |
Copyright terms: Public domain | W3C validator |