Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > con3 | GIF version |
Description: Contraposition inference. (Contributed by NM, 10-Aug-1997.) |
Ref | Expression |
---|---|
con3.1 | a⊥ = b |
Ref | Expression |
---|---|
con3 | a = b⊥ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-a1 30 | . 2 a = a⊥ ⊥ | |
2 | con3.1 | . . 3 a⊥ = b | |
3 | 2 | ax-r4 37 | . 2 a⊥ ⊥ = b⊥ |
4 | 1, 3 | ax-r2 36 | 1 a = b⊥ |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 |
This theorem was proved from axioms: ax-a1 30 ax-r2 36 ax-r4 37 |
This theorem is referenced by: anor3 90 oran1 91 oran2 92 oran3 93 lecon 154 wlem3.1 210 wwcomd 214 wwfh1 216 ud1lem0c 277 nom12 309 nom13 310 comd 456 fh1 469 i3bi 496 ud1lem3 562 ud2lem2 564 ud3lem1a 566 ud3lem2 571 ud4lem1a 577 ud4lem2 582 ud5lem1b 587 ud5lem1 589 ud5lem3 594 u4lemona 628 u2lemnonb 676 oa6to4h1 955 oa6to4h2 956 oa6to4h3 957 lem3.3.4 1053 |
Copyright terms: Public domain | W3C validator |