Proof of Theorem u2lemoa
| Step | Hyp | Ref
| Expression |
| 1 | | df-i2 45 |
. . 3
(a →2 b) = (b ∪
(a⊥ ∩ b⊥ )) |
| 2 | 1 | ax-r5 38 |
. 2
((a →2 b) ∪ a) =
((b ∪ (a⊥ ∩ b⊥ )) ∪ a) |
| 3 | | ax-a2 31 |
. . 3
((b ∪ (a⊥ ∩ b⊥ )) ∪ a) = (a ∪
(b ∪ (a⊥ ∩ b⊥ ))) |
| 4 | | ax-a3 32 |
. . . . 5
((a ∪ b) ∪ (a⊥ ∩ b⊥ )) = (a ∪ (b ∪
(a⊥ ∩ b⊥ ))) |
| 5 | 4 | ax-r1 35 |
. . . 4
(a ∪ (b ∪ (a⊥ ∩ b⊥ ))) = ((a ∪ b) ∪
(a⊥ ∩ b⊥ )) |
| 6 | | ax-a2 31 |
. . . . 5
((a ∪ b) ∪ (a⊥ ∩ b⊥ )) = ((a⊥ ∩ b⊥ ) ∪ (a ∪ b)) |
| 7 | | oran 87 |
. . . . . . 7
(a ∪ b) = (a⊥ ∩ b⊥
)⊥ |
| 8 | 7 | lor 70 |
. . . . . 6
((a⊥ ∩ b⊥ ) ∪ (a ∪ b)) =
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ )⊥
) |
| 9 | | df-t 41 |
. . . . . . 7
1 = ((a⊥ ∩
b⊥ ) ∪ (a⊥ ∩ b⊥ )⊥
) |
| 10 | 9 | ax-r1 35 |
. . . . . 6
((a⊥ ∩ b⊥ ) ∪ (a⊥ ∩ b⊥ )⊥ ) =
1 |
| 11 | 8, 10 | ax-r2 36 |
. . . . 5
((a⊥ ∩ b⊥ ) ∪ (a ∪ b)) =
1 |
| 12 | 6, 11 | ax-r2 36 |
. . . 4
((a ∪ b) ∪ (a⊥ ∩ b⊥ )) = 1 |
| 13 | 5, 12 | ax-r2 36 |
. . 3
(a ∪ (b ∪ (a⊥ ∩ b⊥ ))) = 1 |
| 14 | 3, 13 | ax-r2 36 |
. 2
((b ∪ (a⊥ ∩ b⊥ )) ∪ a) = 1 |
| 15 | 2, 14 | ax-r2 36 |
1
((a →2 b) ∪ a) =
1 |