Proof of Theorem u1lemoa
| Step | Hyp | Ref
| Expression |
| 1 | | df-i1 44 |
. . 3
(a →1 b) = (a⊥ ∪ (a ∩ b)) |
| 2 | 1 | ax-r5 38 |
. 2
((a →1 b) ∪ a) =
((a⊥ ∪ (a ∩ b))
∪ a) |
| 3 | | ax-a2 31 |
. . 3
((a⊥ ∪
(a ∩ b)) ∪ a) =
(a ∪ (a⊥ ∪ (a ∩ b))) |
| 4 | | ax-a3 32 |
. . . . 5
((a ∪ a⊥ ) ∪ (a ∩ b)) =
(a ∪ (a⊥ ∪ (a ∩ b))) |
| 5 | 4 | ax-r1 35 |
. . . 4
(a ∪ (a⊥ ∪ (a ∩ b))) =
((a ∪ a⊥ ) ∪ (a ∩ b)) |
| 6 | | ax-a2 31 |
. . . . 5
((a ∪ a⊥ ) ∪ (a ∩ b)) =
((a ∩ b) ∪ (a
∪ a⊥
)) |
| 7 | | df-t 41 |
. . . . . . . 8
1 = (a ∪ a⊥ ) |
| 8 | 7 | lor 70 |
. . . . . . 7
((a ∩ b) ∪ 1) = ((a ∩ b) ∪
(a ∪ a⊥ )) |
| 9 | 8 | ax-r1 35 |
. . . . . 6
((a ∩ b) ∪ (a
∪ a⊥ )) = ((a ∩ b) ∪
1) |
| 10 | | or1 104 |
. . . . . 6
((a ∩ b) ∪ 1) = 1 |
| 11 | 9, 10 | ax-r2 36 |
. . . . 5
((a ∩ b) ∪ (a
∪ a⊥ )) =
1 |
| 12 | 6, 11 | ax-r2 36 |
. . . 4
((a ∪ a⊥ ) ∪ (a ∩ b)) =
1 |
| 13 | 5, 12 | ax-r2 36 |
. . 3
(a ∪ (a⊥ ∪ (a ∩ b))) =
1 |
| 14 | 3, 13 | ax-r2 36 |
. 2
((a⊥ ∪
(a ∩ b)) ∪ a) =
1 |
| 15 | 2, 14 | ax-r2 36 |
1
((a →1 b) ∪ a) =
1 |