Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > oran | GIF version |
Description: Disjunction expressed with conjunction. (Contributed by NM, 10-Aug-1997.) |
Ref | Expression |
---|---|
oran | (a ∪ b) = (a⊥ ∩ b⊥ )⊥ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-a1 30 | . 2 (a⊥ ⊥ ∪ b⊥ ⊥ ) = (a⊥ ⊥ ∪ b⊥ ⊥ )⊥ ⊥ | |
2 | ax-a1 30 | . . 3 a = a⊥ ⊥ | |
3 | ax-a1 30 | . . 3 b = b⊥ ⊥ | |
4 | 2, 3 | 2or 72 | . 2 (a ∪ b) = (a⊥ ⊥ ∪ b⊥ ⊥ ) |
5 | df-a 40 | . . 3 (a⊥ ∩ b⊥ ) = (a⊥ ⊥ ∪ b⊥ ⊥ )⊥ | |
6 | 5 | ax-r4 37 | . 2 (a⊥ ∩ b⊥ )⊥ = (a⊥ ⊥ ∪ b⊥ ⊥ )⊥ ⊥ |
7 | 1, 4, 6 | 3tr1 63 | 1 (a ∪ b) = (a⊥ ∩ b⊥ )⊥ |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 |
This theorem is referenced by: anor3 90 dfb 94 dfnb 95 mi 125 lecon 154 wlem3.1 210 wwcomd 214 wwfh1 216 wwfh2 217 wwfh3 218 wwfh4 219 ska2b 227 ka4lemo 228 ska10 238 ni31 250 ud2lem0c 278 ud4lem0c 280 ud5lem0c 281 nom12 309 nom13 310 2vwomlem 365 wlecon 395 wcomd 418 wcomdr 421 wfh1 423 wfh2 424 wfh3 425 wfh4 426 ska2 432 ska4 433 wom2 434 comd 456 comdr 466 fh1 469 fh2 470 fh3 471 fh4 472 i3bi 496 ni32 502 lem4 511 i3orlem5 556 ud1lem2 561 ud2lem1 563 ud2lem2 564 ud3lem1a 566 ud3lem1b 567 ud3lem1c 568 ud3lem2 571 ud3lem3d 575 ud4lem1a 577 ud4lem2 582 ud5lem1b 587 ud5lem1 589 ud5lem3c 593 u2lemoa 621 u3lemob 632 u3lemnana 647 u5lemnana 649 u1lemnanb 655 u2lemnanb 656 u3lemnanb 657 u4lemnanb 658 u5lemnanb 659 u2lem1 735 u4lem1n 742 u3lem11 786 u3lem15 795 1oa 820 2oalem1 825 2oath1 826 bi3 839 mlaconj4 844 mlaconjo 886 mhcor1 888 oa6fromdual 953 lem3.3.4 1053 |
Copyright terms: Public domain | W3C validator |