Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > u2lemona | GIF version |
Description: Lemma for Dishkant implication study. (Contributed by NM, 15-Dec-1997.) |
Ref | Expression |
---|---|
u2lemona | ((a →2 b) ∪ a⊥ ) = (a⊥ ∪ b) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-i2 45 | . . 3 (a →2 b) = (b ∪ (a⊥ ∩ b⊥ )) | |
2 | 1 | ax-r5 38 | . 2 ((a →2 b) ∪ a⊥ ) = ((b ∪ (a⊥ ∩ b⊥ )) ∪ a⊥ ) |
3 | ax-a3 32 | . . 3 ((b ∪ (a⊥ ∩ b⊥ )) ∪ a⊥ ) = (b ∪ ((a⊥ ∩ b⊥ ) ∪ a⊥ )) | |
4 | ax-a2 31 | . . . 4 (b ∪ ((a⊥ ∩ b⊥ ) ∪ a⊥ )) = (((a⊥ ∩ b⊥ ) ∪ a⊥ ) ∪ b) | |
5 | lea 160 | . . . . . 6 (a⊥ ∩ b⊥ ) ≤ a⊥ | |
6 | 5 | df-le2 131 | . . . . 5 ((a⊥ ∩ b⊥ ) ∪ a⊥ ) = a⊥ |
7 | 6 | ax-r5 38 | . . . 4 (((a⊥ ∩ b⊥ ) ∪ a⊥ ) ∪ b) = (a⊥ ∪ b) |
8 | 4, 7 | ax-r2 36 | . . 3 (b ∪ ((a⊥ ∩ b⊥ ) ∪ a⊥ )) = (a⊥ ∪ b) |
9 | 3, 8 | ax-r2 36 | . 2 ((b ∪ (a⊥ ∩ b⊥ )) ∪ a⊥ ) = (a⊥ ∪ b) |
10 | 2, 9 | ax-r2 36 | 1 ((a →2 b) ∪ a⊥ ) = (a⊥ ∪ b) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →2 wi2 13 |
This theorem was proved from axioms: ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-i2 45 df-le1 130 df-le2 131 |
This theorem is referenced by: u2lemnaa 641 |
Copyright terms: Public domain | W3C validator |