Quantum Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > QLE Home > Th. List > u2lemnaa | GIF version |
Description: Lemma for Dishkant implication study. (Contributed by NM, 15-Dec-1997.) |
Ref | Expression |
---|---|
u2lemnaa | ((a →2 b)⊥ ∩ a) = (a ∩ b⊥ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anor2 89 | . . 3 ((a →2 b)⊥ ∩ a) = ((a →2 b) ∪ a⊥ )⊥ | |
2 | u2lemona 626 | . . . 4 ((a →2 b) ∪ a⊥ ) = (a⊥ ∪ b) | |
3 | 2 | ax-r4 37 | . . 3 ((a →2 b) ∪ a⊥ )⊥ = (a⊥ ∪ b)⊥ |
4 | 1, 3 | ax-r2 36 | . 2 ((a →2 b)⊥ ∩ a) = (a⊥ ∪ b)⊥ |
5 | anor1 88 | . . 3 (a ∩ b⊥ ) = (a⊥ ∪ b)⊥ | |
6 | 5 | ax-r1 35 | . 2 (a⊥ ∪ b)⊥ = (a ∩ b⊥ ) |
7 | 4, 6 | ax-r2 36 | 1 ((a →2 b)⊥ ∩ a) = (a ∩ b⊥ ) |
Colors of variables: term |
Syntax hints: = wb 1 ⊥ wn 4 ∪ wo 6 ∩ wa 7 →2 wi2 13 |
This theorem was proved from axioms: ax-a1 30 ax-a2 31 ax-a3 32 ax-a5 34 ax-r1 35 ax-r2 36 ax-r4 37 ax-r5 38 |
This theorem depends on definitions: df-a 40 df-i2 45 df-le1 130 df-le2 131 |
This theorem is referenced by: u2lem7 773 |
Copyright terms: Public domain | W3C validator |